KUSB-3116

User's Manual

KUSB3116-900-01 Rev. A / January 2005

WARRANTY

Keithley Instruments, Inc. warrants this product to be free from defects in material and workmanship for a period of 3 years from date of shipment.

Keithley Instruments, Inc. warrants the following items for 90 days from the date of shipment: probes, cables, rechargeable batteries, diskettes, and documentation.

During the warranty period, we will, at our option, either repair or replace any product that proves to be defective.

To exercise this warranty, write or call your local Keithley representative, or contact Keithley headquarters in Cleveland, Ohio. You will be given prompt assistance and return instructions. Send the product, transportation prepaid, to the indicated service facility. Repairs will be made and the product returned, transportation prepaid. Repaired or replaced products are warranted for the balance of the original warranty period, or at least 90 days.

LIMITATION OF WARRANTY

This warranty does not apply to defects resulting from product modification without Keithley's express written consent, or misuse of any product or part. This warranty also does not apply to fuses, software, non-rechargeable batteries, damage from battery leakage, or problems arising from normal wear or failure to follow instructions.

THIS WARRANTY IS IN LIEU OF ALL OTHER WARRANTIES, EXPRESSED OR IMPLIED, INCLUDING ANY IMPLIED WARRANTY OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR USE. THE REMEDIES PROVIDED HEREIN ARE BUYER'S SOLE AND EXCLUSIVE REMEDIES.

NEITHER KEITHLEY INSTRUMENTS, INC. NOR ANY OF ITS EMPLOYEES SHALL BE LIABLE FOR ANY DIRECT, INDIRECT, SPECIAL, INCIDENTAL OR CONSEQUENTIAL DAMAGES ARISING OUT OF THE USE OF ITS INSTRUMENTS AND SOFTWARE EVEN IF KEITHLEY INSTRUMENTS, INC., HAS BEEN ADVISED IN ADVANCE OF THE POSSIBILITY OF SUCH DAMAGES. SUCH EXCLUDED DAMAGES SHALL INCLUDE, BUT ARE NOT LIMITED TO: COSTS OF REMOVAL AND INSTALLATION, LOSSES SUSTAINED AS THE RESULT OF INJURY TO ANY PERSON, OR DAMAGE TO PROPERTY.

A GREATER MEASURE OF CONFIDENCE

Keithley Instruments, Inc.

Corporate Headquarters • 28775 Aurora Road • Cleveland, Ohio 44139 440-248-0400 • Fax: 440-248-6168 • 1-888-KEITHLEY (534-8453) • www.keithley.com

KUSB-3116 User's Manual

©2005, Keithley Instruments, Inc. All rights reserved. First Printing, January 2005 Cleveland, Ohio, U.S.A. Document Number: KUSB3116-900-01A Rev. A

Manual Print History

The print history shown below lists the printing dates of all Revisions and Addenda created for this manual. The Revision Level letter increases alphabetically as the manual undergoes subsequent updates. Addenda, which are released between Revisions, contain important change information that the user should incorporate immediately into the manual. Addenda are numbered sequentially. When a new Revision is created, all Addenda associated with the previous Revision of the manual are incorporated into the new Revision of the manual. Each new Revision includes a revised copy of this print history page.

KEITHLEY

Safety Precautions

The following safety precautions should be observed before using this product and any associated instrumentation. Although some instruments and accessories would normally be used with non-hazardous voltages, there are situations where hazardous conditions may be present.

This product is intended for use by qualified personnel who recognize shock hazards and are familiar with the safety precautions required to avoid possible injury. Read and follow all installation, operation, and maintenance information carefully before using the product. Refer to the manual for complete product specifications.

If the product is used in a manner not specified, the protection provided by the product may be impaired.

The types of product users are:

Responsible body is the individual or group responsible for the use and maintenance of equipment, for ensuring that the equipment is operated within its specifications and operating limits, and for ensuring that operators are adequately trained.

Operators use the product for its intended function. They must be trained in electrical safety procedures and proper use of the instrument. They must be protected from electric shock and contact with hazardous live circuits.

Maintenance personnel perform routine procedures on the product to keep it operating properly, for example, setting the line voltage or replacing consumable materials. Maintenance procedures are described in the manual. The procedures explicitly state if the operator may perform them. Otherwise, they should be performed only by service personnel.

Service personnel are trained to work on live circuits, and perform safe installations and repairs of products. Only properly trained service personnel may perform installation and service procedures.

Keithley products are designed for use with electrical signals that are rated Measurement Category I and Measurement Category II, as described in the International Electrotechnical Commission (IEC) Standard IEC 60664. Most measurement, control, and data I/O signals are Measurement Category I and must not be directly connected to mains voltage or to voltage sources with high transient overvoltages. Measurement Category II connections require protection for high transient over-voltages often associated with local AC mains connections. Assume all measurement, control, and data I/O connections are for connection to Category I sources unless otherwise marked or described in the Manual.

Exercise extreme caution when a shock hazard is present. Lethal voltage may be present on cable connector jacks or test fixtures. The American National Standards Institute (ANSI) states that a shock hazard exists when voltage levels greater than 30V RMS, 42.4V peak, or 60VDC are present. A good safety practice is to expect that hazardous voltage is present in any unknown circuit before measuring.

Operators of this product must be protected from electric shock at all times. The responsible body must ensure that operators are prevented access and/or insulated from every connection point. In some cases, connections must be exposed to potential human contact. Product operators in these circumstances must be trained to protect themselves from the risk of electric shock. If the circuit is capable of operating at or above 1000 volts, **no conductive part of the circuit may be exposed.**

Do not connect switching cards directly to unlimited power circuits. They are intended to be used with impedance limited sources. NEVER connect switching cards directly to AC mains. When connecting sources to switching cards, install protective devices to limit fault current and voltage to the card.

Before operating an instrument, make sure the line cord is connected to a properly grounded power receptacle. Inspect the connecting cables, test leads, and jumpers for possible wear, cracks, or breaks before each use.

When installing equipment where access to the main power cord is restricted, such as rack mounting, a separate main input power disconnect device must be provided, in close proximity to the equipment and within easy reach of the operator.

For maximum safety, do not touch the product, test cables, or any other instruments while power is applied to the circuit under test. ALWAYS remove power from the entire test system and discharge any capacitors before: connecting or disconnecting cables or jumpers, installing or removing switching cards, or making internal changes, such as installing or removing jumpers.

Do not touch any object that could provide a current path to the common side of the circuit under test or power line (earth) ground. Always make measurements with dry hands while standing on a dry, insulated surface capable of withstanding the voltage being measured.

The instrument and accessories must be used in accordance with its specifications and operating instructions or the safety of the equipment may be impaired.

Do not exceed the maximum signal levels of the instruments and accessories, as defined in the specifications and operating information, and as shown on the instrument or test fixture panels, or switching card.

When fuses are used in a product, replace with same type and rating for continued protection against fire hazard.

Chassis connections must only be used as shield connections for measuring circuits, NOT as safety earth ground connections.

If you are using a test fixture, keep the lid closed while power is applied to the device under test. Safe operation requires the use of a lid interlock.

If a $\stackrel{\triangle}{=}$ screw is present, connect it to safety earth ground using the wire recommended in the user documentation.

The symbol on an instrument indicates that the user should refer to the operating instructions located in the manual.

The symbol on an instrument shows that it can source or measure 1000 volts or more, including the combined effect of normal and common mode voltages. Use standard safety precautions to avoid personal contact with these voltages.

The \overrightarrow{h} symbol indicates a connection terminal to the equipment frame.

The **WARNING** heading in a manual explains dangers that might result in personal injury or death. Always read the associated information very carefully before performing the indicated procedure.

The **CAUTION** heading in a manual explains hazards that could damage the instrument. Such damage may invalidate the warranty.

Instrumentation and accessories shall not be connected to humans.

Before performing any maintenance, disconnect the line cord and all test cables.

To maintain protection from electric shock and fire, replacement components in mains circuits, including the power transformer, test leads, and input jacks, must be purchased from Keithley Instruments. Standard fuses, with applicable national safety approvals, may be used if the rating and type are the same. Other components that are not safety related may be purchased from other suppliers as long as they are equivalent to the original component. (Note that selected parts should be purchased only through Keithley Instruments to maintain accuracy and functionality of the product.) If you are unsure about the applicability of a replacement component, call a Keithley Instruments office for information.

To clean an instrument, use a damp cloth or mild, water based cleaner. Clean the exterior of the instrument only. Do not apply cleaner directly to the instrument or allow liquids to enter or spill on the instrument. Products that consist of a circuit board with no case or chassis (e.g., data acquisition board for installation into a computer) should never require cleaning if handled according to instructions. If the board becomes contaminated and operation is affected, the board should be returned to the factory for proper cleaning/servicing.

Table of Contents

About this Manual xi
Intended Audiencexi
How this Manual is Organized xi
Conventions Used in this Manual xii
Related Informationxii
Where To Get Helpxiii
Chapter 1: Overview
Hardware Features2
Supported Software
Chapter 2: Principles of Operation 5
Analog Input Features
Input Resolution
Analog Input Channels
Specifying a Single Analog Input Channel9
Specifying One or More Analog Input Channels 9
Specifying the Digital Input Port in the Analog Input Channel-Gain List10
Specifying Counter/Timers in the Analog Input Channel-Gain List
Performing Dynamic Digital Output Operations 13
Input Ranges and Gains
Specifying the Gain for a Single Channel 15
Specifying the Gain for One or More Channels 15
Input Sample Clock Sources

Analog Input Conversion Modes	7
Continuous Scan Mode	8
Triggered Scan Mode	9
Internally Retriggered Scan Mode	0
Externally Retriggered Scan Mode	1
Input Triggers	2
Data Format and Transfer	3
Error Conditions	5
Analog Output Features	6
Output Resolution	6
Analog Output Channels	6
Specifying a Single Analog Output Channel 27	7
Specifying Multiple Analog Output Channels and/or the Digital Output Port	7
Output Ranges and Gains	
Output Triggers	
Output Clocks	
Output Conversion Modes	
Continuously Paced Analog Output	
Waveform Generation	
Data Format and Transfer	3
Error Conditions	4
Digital I/O Features35	5
Digital I/O Lines	5
Operation Modes	6
Counter/Timer Features	8
C/T Channels 38	8
C/T Clock Sources	9
Gate Types	0
Pulse Output Types and Duty Cycles 43	1

Counter/Timer Operation Modes
Event Counting
Up/Down Counting
Frequency Measurement 44
Edge-to-Edge Measurement
Rate Generation
One-Shot
Repetitive One-Shot
Chapter 3: Supported Device Driver Capabilities 51
Chapter 4: Programming Flowcharts 63
Single-Value Operations
Continuous A/D Operations
Continuous D/A Operations
Continuous Digital Input Operations
Continuous Digital Output Operations
Event Counting Operations
Up/Down Counting Operations
Frequency Measurement Operations
Edge-to-Edge Measurement Operations
Pulse Output Operations
Simultaneous Operations
Chapter 5: Troubleshooting 97
General Checklist
Service and Support
Annendix A: Specifications 103

Appendix B: Connector Pin Assignments	113
Analog Input Connector	114
Digital I/O Connector	116
Analog Output, Counter/Timer, Clock, and Trigger Connector	118
Index	121

About this Manual

This manual describes the features of the KUSB-3116 module, the capabilities of the device driver, and how to program the KUSB-3116 module using DT-Open Layers™ software. Troubleshooting information is also provided.

Intended Audience

This document is intended for engineers, scientists, technicians, or others responsible for using and/or programming the KUSB-3116 module for data acquisition operations in the Microsoft® Windows® 2000 or Windows XP operating system. It is assumed that you have some familiarity with data acquisition principles and that you understand your application.

How this Manual is Organized

This manual is organized as follows:

- Chapter 1, "Overview," describes the major features of the KUSB-3116 module, as well as the supported software and accessories for the modules.
- Chapter 2, "Principles of Operation," describes all of the features
 of the KUSB-3116 module and how to use them in your
 application.
- Chapter 3, "Supported Device Driver Capabilities," lists the data acquisition subsystems and the associated features accessible using the device driver.
- Chapter 4, "Programming Flowcharts," describes the processes you must follow to program the subsystems of the KUSB-3116 module using DT-Open Layers-compliant software.

- Chapter 5, "Troubleshooting," provides information that you can use to resolve problems with the KUSB-3116 module and device driver, should they occur.
- Appendix A, "Specifications," lists the specifications of the KUSB-3116 module.
- Appendix B, "Connector Pin Assignments," shows the pin assignments for the connectors on the KUSB-3116 module.
- An index completes this manual.

Conventions Used in this Manual

The following conventions are used in this manual:

- Notes provide useful information or information that requires special emphasis, cautions provide information to help you avoid losing data or damaging your equipment, and warnings provide information to help you avoid catastrophic damage to yourself or your equipment.
- Items that you select or type are shown in **bold**.

Related Information

Refer to the following documents for more information on using the KUSB-3116 module:

- *KUSB-3116 Getting Started Manual*. This manual, included on the CD that is shipped with the module, describes the how to install the KUSB-3116 module and related software.
- DataAcq SDK User's Manual. For programmers who are developing their own application programs using the Microsoft C compiler, this manual describes how to use the DT-Open Layers™ DataAcq SDK™ in Windows 2000 or Windows XP to access the capabilities of your module.

- DTx-EZ Getting Started Manual. This manual describes how to use the ActiveX controls provided in DTx-EZ™ to access the capabilities of your module in Microsoft Visual Basic® or Visual C++®.
- DT-LV Link Getting Started Manual. This manual describes how to use DT-LV LinkTM with the LabVIEW® graphical programming language to access the capabilities of your module.
- Microsoft Windows 2000 or Windows XP documentation.
- USB web site (http://www.usb.org).

Where To Get Help

Should you run into problems installing or using your KUSB-3116 module, please call the Keithley Technical Support Department.

Overview

Hardware Features	 2
Supported Software	 4

Hardware Features

The KUSB-3116 is a high-performance, multifunction data acquisition modules for the USB (Ver. 2.0 or Ver. 1.1) bus. The key hardware features of the KUSB-3116 module are as follows:

- Installed in a metal BNC box to provide easy connections.
- Simultaneous operation of analog input, analog output, digital I/O, and counter/timer subsystems.
- Analog input subsystem:
 - 16-bit A/D converter.
 - Throughput rate up to 500 kSamples/s.
 - 16 single-ended or 8 differential analog input channels.
 - Programmable gain of 1, 2, 4, or 8 provides input ranges of ±10, ±5, ±2.5, and ±1.25 V.
 - 1024-location channel-gain list. You can cycle through the channel-gain list using continuous scan mode or triggered scan mode. The maximum sampling rate when using the channel-gain list is 500 kSamples/s.
- Analog output subsystem:
 - Four 16-bit D/A converters.
 - Output rate up to 500 kSamples/s.
 - Output range of ±10 V.
 - The DACs are deglitched to prevent noise from interfering with the output signal.
 - Output channel list. You can cycle through the output channel list using continuous output mode or waveform mode. For waveform generation mode, you can simultaneously update all four DACs at 500 kS/s per channel; for continuous output mode, you can simultaneously update all four DACs at 250 kS/s per channel.

• Digital I/O subsystem:

- One digital input port, consisting of 16 digital input lines. You
 can program any of the first eight digital input lines to
 perform interrupt-on-change operations. You can read the
 value of the digital input port using the analog input
 channel-gain list.
- One digital output port, consisting of 16 digital output lines.
 You can output the value of the digital output port using the output channel list.
- An additional dynamic digital output line that changes state whenever an analog input channel is read.
- Five 32-bit counter/timer (C/T) channels that perform event counting, up/down counting, frequency measurement, edge-to-edge measurement, continuous pulse output, one-shot, and repetitive one-shot operations. You can read the value of one or more of the C/T channels using the analog input channel-gain list.
- External or internal clock source.
- Trigger operations using a software command, an analog threshold value, or an external digital input value as the trigger event.
- 500 V galvanic isolation barrier that prevents ground loops to maximize analog signal integrity and protect your computer.

Supported Software

The following software is available for use with the KUSB-3116 module:

- Device Driver –This software is provided on the CD shipped with the module. The device driver allows you to use a KUSB-3116 module with any of the supported software packages or utilities. Refer to the KUSB-3116 Getting Started Manual for more information on loading and configuring the device driver.
- Quick Data Acq application –This application provides a quick way to get a KUSB-3116 module up and running. Using the Quick Data Acq application, you can verify the features of the module, display data on the screen, and save data to disk.
- DataAcq SDK –This DT-Open Layers Software Develop Kit (SDK) allows programmers to develop application programs for the KUSB-3116 using the Microsoft C compiler in Windows 2000 or Windows XP.
- DTx-EZ –This software package contains ActiveX controls that allow Microsoft Visual Basic® or Visual C++® programmers to access the capabilities of the KUSB-3116 module.
- DT-LV Link –This software package allows LabVIEW® programmers to access the capabilities of the KUSB-3116 module.

Principles of Operation

Analog Input Features	. 7
Analog Output Features	26
Digital I/O Features	35
Counter/Timer Features	38

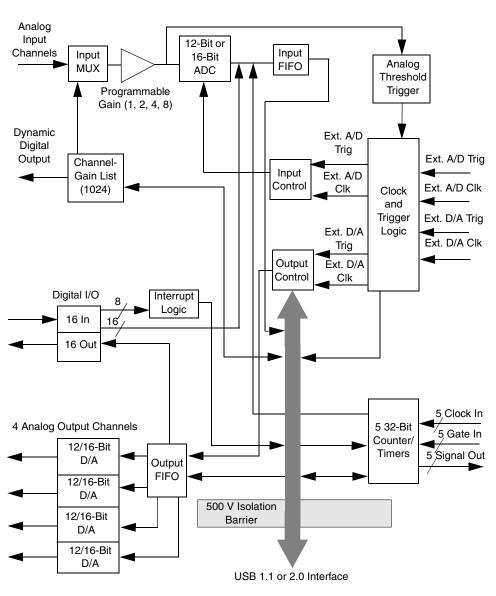


Figure 1 shows a block diagram of the KUSB-3116 module.

Figure 1: Block Diagram of the KUSB-3116 Module

2

Analog Input Features

This section describes the following features of analog input (A/D) operations on the KUSB-3116 module:

- Input resolution, described on this page;
- Analog input channels, described on page 7;
- Input ranges and gains, described on page 14;
- Input sample clock sources, described on page 16;
- Analog input conversion modes, described on page 17;
- Input triggers, described on page 22;
- Data format and transfer, described on page 23; and
- Error conditions, described on page 25.

Input Resolution

The resolution of the KUSB-3116 module is fixed at 16 bits. You cannot specify the resolution in software.

Analog Input Channels

You can use the analog input channels in one of the following configurations:

• **Single-ended** –Single-ended channels are useful when you are measuring high-level signals, when noise is not significant, when the source of the input is close to the module, and when all the input signals are referred to the same common ground.

- Pseudo-Differential —Pseudo-differential channels are useful
 when noise or common-mode voltage (the difference between the
 ground potentials of the signal source and the ground of the
 screw terminal panel or between the grounds of other signals)
 exists and when the differential configuration is not suitable for
 your application. This option provides less noise rejection than
 the differential configuration; however, more analog input
 channels are available.
- Differential –Differential channels are useful when you want to measure low-level signals, when noise is a significant part of the signal, or when common-mode voltage exists.

The BNC connectors on the KUSB-3116 module are configured in the single-ended channel configuration. To access the differential signals, you need to use the analog input connector.

Note: For pseudo-differential inputs, specify single-ended in software; in this case, how you wire these signals determines the configuration.

Using the Open Layers Control Panel applet, you can also select whether to use $10 \text{ k}\Omega$ termination resistance between the low side of each differential channel and isolated analog ground. This feature is particularly useful with floating signal sources. Refer to the KUSB-3116 Getting Started Manual for more information about wiring to inputs and configuring the driver to use bias return termination resistance.

The KUSB-3116 module can acquire data from a single analog input channel or from a group of analog input channels. Channels are numbered 0 to 31 for single-ended and pseudo-differential inputs, and 0 to 15 for differential inputs.

The following subsections describe how to specify the channels.

Specifying a Single Analog Input Channel

The simplest way to acquire data from a single analog input channel is to specify the channel for a single-value analog input operation using software; refer to page 17 for more information about single-value operations.

You can also specify a single channel using the analog input channel-gain list, described in the next section.

Specifying One or More Analog Input Channels

You can read data from one or more analog input channels using an analog input channel-gain list. You can group the channels in the list sequentially (starting either with 0 or with any other analog input channel) or randomly. You can also specify a single channel or the same channel more than once in the list.

Using software, specify the channels in the order you want to sample them. You can enter up to 1,024 entries in the channel-gain list. The channels are read in order (using continuously paced scan mode or triggered scan mode) from the first entry in the list to the last entry in the list. Refer to page 17 for more information about the supported conversion modes.

You can also use software to set up a channel-inhibit list. This feature is useful if you want to discard acquired values from specific entries in the channel-gain list. Using the channel-inhibit list, you can enable or disable inhibition for each entry in the channel-gain list. If enabled, the value is discarded after the channel is read; if disabled, the value is not discarded after the channel is read.

Notes: If you select an analog input channel as the analog threshold trigger source, the channel used for this trigger source must be the first channel specified in the channel-gain list; refer to page 22 for more information about this trigger source.

The maximum rate at which the module can read the analog input channels depends on the total number of analog input channels and/or counter/timer channels (see page 11) in the list, and whether or not you are reading the digital input port (see the next section). For example, since the maximum throughput of the analog input subsystem is 500 kSamples/s, the module can read two analog input channels at a rate of 250 kSamples/s each or four analog input channels at a rate of 125 kSamples/s each.

Specifying the Digital Input Port in the Analog Input Channel-Gain List

The KUSB-3116 module allows you to read the digital input port (all 16 digital input lines) using the analog input channel-gain list. This feature is particularly useful when you want to correlate the timing of analog and digital events.

To read the digital input port, specify channel 16 or channel 32 in the analog input channel-gain list. Use channel 16 for modules with 16 single-ended channels or eight differential channels; use channel 32 for modules with 32 single-ended channels or 16 differential channels. You can enter channel 16 or 32 anywhere in the list, and you can enter it more than once, if desired.

The digital input port is treated like any other channel in the analog input channel-gain list; therefore, all the clocking, triggering, and conversion modes supported for analog input channels are supported for the digital input port, if you specify them this way.

Note: The maximum rate at which the module can read the digital input port depends on the total number of analog input channels (see page 9) and/or counter/timer channels (see the next section) in the channel-gain list. For example, since the maximum throughput of the analog input subsystem is 500 kSamples/s, the module can read one analog input channel and the digital input port (two channels/ports) at a rate of 250 kSamples/s each or three analog input channels and the digital input port (four channels/ports) at a rate of 125 kSamples/s each.

Specifying Counter/Timers in the Analog Input Channel-Gain List

The KUSB-3116 module allows you to read the value of one or more of the five counter/timer channels using the analog input channel-gain list. This feature is particularly useful when you want to correlate the timing of analog and counter/timer events.

To read a counter/timer channel, specify the appropriate channel number in the analog input channel-gain list (refer to Table 1 on page 12). You can enter a channel number anywhere in the list, and you can enter it more than once, if desired.

You need two channel-gain list entries to read one 32-bit counter value. The first entry stores the lower 16-bit word, and the second entry stores the upper 16-bit word. If you need only the lower 16-bit word, you do not have to include the second entry. The entire 32-bit count value is latched when the lower 16-bit word is stored. This prevents the counter/timer from incrementing between samples.

Table 1 lists the channel number(s) to use for each counter/timer.

Table 1: Using Counter/Timers in Analog Input Channel-Gain List

Counter/Timer Channel	Description	Channel to Specify in Channel-Gain List
C/T_0_LOW	Lower 16 bits (0 to 15) of C/T 0	Channel 17
C/T_0_HI	Upper 16 bits (16 to 31) of C/T 0	Channel 18
C/T_1_LOW	Lower 16 bits (0 to 15) of C/T 1	Channel 19
C/T_1_HI	Upper 16 bits (16 to 31) of C/T 1	Channel 20
C/T_2_LOW	Lower 16 bits (0 to 15) of C/T 2	Channel 21
C/T_2_HI	Upper 16 bits (16 to 31) of C/T 2	Channel 22
C/T_3_LOW	Lower 16 bits (0 to 15) of C/T 3	Channel 23
C/T_3_HI	Upper 16 bits (16 to 31) of C/T 3	Channel 24
C/T_4_LOW	Lower 16 bits (0 to 15) of C/T 4	Channel 25
C/T_4_HI	Upper 16 bits (16 to 31) of C/T 4	Channel 26

The counter/timer channel is treated like any other channel in the analog input channel-gain list; therefore, all the clocking, triggering, and conversion modes supported for analog input channels are supported for the counter/timers, if you specify them this way.

Note: The maximum rate at which the module can read the counter/timers depends on the total number of counter/timer channels and/or analog input channels (see page 9) in the list and whether or not you are reading the digital input port (see page 10). For example, since the maximum throughput of the analog input subsystem is 500 kSamples/s, the module can read one analog input channel and one counter/timer channel (two channels) at a rate of 250 kSamples/s each or three analog input channels and one counter/timer channel (four channels) at a rate of 125 kSamples/s each.

Performing Dynamic Digital Output Operations

Using software, you can enable a synchronous dynamic digital output operation for the analog input subsystem. This feature is particularly useful when you want to synchronize and control external equipment.

One dynamic digital output line is accessible through hardware. This line is set to a value of 0 on power up; a reset does not affect the value of the dynamic digital output line. Note that this line is provided in addition to the other 16 digital output lines; see page 35 for more information about the digital I/O features.

You specify the value (0 or 1) to write from the dynamic digital output line using the analog input channel-gain list. A value of 0 indicates a low-level signal; a value of 1 indicates a high-level signal.

As each entry in the channel-gain list is read, the corresponding value is output to the dynamic digital output line. For example, assume that dynamic digital output operations are enabled; that the channel-gain list contains analog input channels 0, 1, 2, and 3; and that the channel-gain list contains the dynamic digital output values 1, 0, 0, 1. Figure 2 shows this configuration.

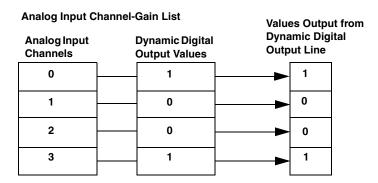


Figure 2: Example Using Dynamic Digital Outputs

As analog input channel 0 is read, a high-level signal is output to the dynamic digital output line. As analog input channels 1 and 2 are read, a low-level signal is output to the dynamic digital output line. As analog input channel 3 is read, a high-level signal is output to the dynamic digital output line.

Input Ranges and Gains

Table 2 lists the supported gains and effective bipolar input ranges for each.

Table 2: Effective Input Range

Gain	Input Range
1	±10 V
2	±5 V
4	±2.5 V
8	±1.25 V

2

Using software, specify a range of -10 V to +10 V. Note that this is the range for the entire analog input subsystem, not the range per channel.

For each channel, choose the gain that has the smallest effective range that includes the signal you want to measure. For example, if the range of your analog input signal is ± 1.05 V, specify a range of ± 1.05 V to ± 1.05 V for the module and use a gain of 8 for the channel; the effective input range for this channel is then ± 1.25 V, which provides the best sampling accuracy for that channel.

The way you specify gain depends on how you specified the channels, as described in the following subsections.

Specifying the Gain for a Single Channel

The simplest way to specify gain for a single channel is to specify the gain for a single-value analog input operation using software; refer to page 17 for more information about single-value operations.

You can also specify the gain for a single channel using an analog input channel-gain list, described in the next section.

Specifying the Gain for One or More Channels

You can specify the gain for one or more analog input channels using an analog input channel-gain list. Using software, set up the channel-gain list by specifying the gain for each entry in the list.

For example, assume the analog input channel-gain list contains three entries: channels 5, 6, and 7 and gains 2, 4, and 1. A gain of 2 is applied to channel 5, a gain of 4 is applied to channel 6, and a gain of 1 is applied to channel 7.

Note: For channel 16 or 32 (the digital input port) and channels 17 through 26 or channels 33 through 42 (the counter/timer channels), specify a gain of 1.

Input Sample Clock Sources

The KUSB-3116 module allows you to use one of the following clock sources to pace analog input operations:

• Internal A/D clock – Using software, specify the clock source as internal and the clock frequency at which to pace the operation. The minimum frequency supported is 0.75 Samples/s; the maximum frequency supported is 500 kSamples/s.

According to sampling theory (Nyquist Theorem), specify a frequency that is at least twice as fast as the input's highest frequency component. For example, to accurately sample a 20 kHz signal, specify a sampling frequency of at least 40 kHz. Doing so avoids an error condition called *aliasing*, in which high frequency input components erroneously appear as lower frequencies after sampling.

• External A/D clock – An external A/D clock is useful when you want to pace acquisitions at rates not available with the internal A/D clock or when you want to pace at uneven intervals.

Connect an external A/D clock to the External ADC Clock input signal on the KUSB-3116 module. Conversions start on the falling edge of the external A/D clock input signal.

Using software, specify the clock source as external. The clock frequency is always equal to the frequency of the external A/D sample clock input signal that you connect to the module.

Note: If you specify channel 16 or 32 (the digital input port) and/or channels 17 through 26 or channels 33 through 42 (the counter/timer channels) in the channel-gain list, the input sample clock (internal or external) also paces the acquisition of the digital input port and/or counter/timer channels.

Analog Input Conversion Modes

The KUSB-3116 module supports the following conversion modes:

- Single-value operations are the simplest to use. Using software, you specify the range, gain, and analog input channel. The module acquires the data from the specified channel and returns the data immediately. For a single-value operation, you cannot specify a clock source, trigger source, scan mode, or buffer.
 - Single-value operations stop automatically when finished; you cannot stop a single-value operation.
- Scan mode takes full advantage of the capabilities of the KUSB-3116 module. For a scan, you can specify a channel-gain list, clock source, trigger source, scan mode, buffer, and buffer wrap mode using software. Two scan modes are supported: continuous scan mode and triggered scan mode (often called burst mode). These modes are described in the following subsections.

Using software, you can stop a scan by performing either an orderly stop or an abrupt stop. In an orderly stop, the module finishes acquiring the data, stops all subsequent acquisition, and transfers the acquired data to host memory; any subsequent triggers are ignored.

In an abrupt stop, the module stops acquiring samples immediately; the acquired data is not transferred to host memory, and any subsequent triggers are ignored.

Continuous Scan Mode

Use continuous scan mode if you want to accurately control the period between conversions of individual channels in a scan.

When it detects an initial trigger, the module cycles through the channel-gain list, acquiring and converting the value for each entry in the list (this process is defined as the scan). The module then wraps to the start of the channel-gain list and repeats the process continuously until either the allocated buffers are filled or until you stop the operation. Refer to page 23 for more information about buffers.

The conversion rate is determined by the frequency of the input sample clock; refer to page 16 for more information about the input sample clock. The sample rate, which is the rate at which a single entry in the channel-gain list is sampled, is determined by the frequency of the input sample clock divided by the number of entries in the channel-gain list.

To select continuous scan mode, use software to specify the data flow as continuous and to specify the initial trigger (the trigger source that starts the operation). You can select a software trigger, an external TTL trigger, or an analog threshold trigger as the initial trigger. Refer to page 22 for more information about the supported trigger sources.

Figure 3 illustrates continuous scan mode using a channel-gain list with three entries: channel 0, channel 1, and channel 2. In this example, analog input data is acquired on each clock pulse of the input sample clock. When it reaches the end of the channel-gain list, the module wraps to the beginning of the channel-gain list and repeats this process. Data is acquired continuously.

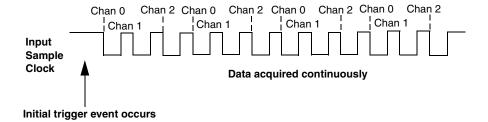


Figure 3: Continuous Scan Mode

Triggered Scan Mode

Use triggered scan mode if you want to accurately control both the period between conversions of individual channels in a scan and the period between each scan. This mode is useful in emulating simultaneous sample-and-hold and trigger-per-buffer operations. You can acquire up to 262,144 samples per trigger (256 times per trigger x 1024-location channel-gain list).

The KUSB-3116 module supports two triggered scan modes: internally retriggered and externally retriggered. These modes are described in the following subsections.

Internally Retriggered Scan Mode

In internally retriggered scan mode, the module waits for the initial trigger to occur. When it detects an initial trigger, the module scans the analog input channel-gain list a specified number of times (up to 256), then waits for an internal retrigger to occur. When it detects an internal retrigger, the module scans the channel-gain list the specified number of times, then waits for another internal retrigger to occur. The process repeats continuously until either the allocated buffers are filled or you stop the operation; refer to page 23 for more information about buffers.

The sample rate is determined by the frequency of the input sample clock divided by the number of entries in the channel-gain list; refer to page 16 for more information about the input sample clock. The conversion rate of each scan is determined by the frequency of the internal retrigger clock. The minimum frequency supported is 0.75 Samples/s; the maximum frequency supported is 500 kSamples/s.

Specify the retrigger frequency as follows:

Min. Retrigger =
$$\#$$
 of CGL entries $x \#$ of CGLs per trigger + 2 μ s Period A/D sample clock frequency

Max. Retrigger = $\frac{1}{\text{Min. Retrigger Period}}$

For example, if you are using 512 channels in the channel-gain list, scanning the channel-gain list 256 times every trigger or retrigger, and using an A/D sample clock with a frequency of 100 kHz, set the maximum retrigger frequency to 0.762 Hz, since

$$0.762 \text{ Hz} = \frac{1}{(512 * 256) + 2 \mu s}$$
 100 kHz

2

To select internally retriggered scan mode, use software to specify the following parameters:

- The dataflow as continuous,
- Triggered scan mode usage as enabled,
- The initial trigger (the trigger source that starts the acquisition),
- The retrigger mode as internal,
- The number of times to scan per trigger or retrigger (also called the multiscan count), and
- The frequency of the retrigger clock.

Externally Retriggered Scan Mode

In externally retriggered scan mode, the module waits for the initial trigger to occur. When it detects an initial trigger, the module scans the channel-gain list up to 256 times, then waits for an external retrigger to occur.

When the retrigger occurs, the module scans the channel-gain list the specified number of times, then waits for another external digital (TTL) trigger to occur. The process repeats continuously until either the allocated buffers are filled or you stop the operation; refer to page 23 for more information about buffers.

The conversion rate of each channel is determined by the frequency of the input sample clock; refer to page 16 for more information about the input sample clock. The conversion rate of each scan is determined by the period between external retriggers; therefore, it cannot be accurately controlled. The module ignores external triggers that occur while it is acquiring data. Only external retrigger events that occur when the module is waiting for a retrigger are detected and acted on.

To select externally retriggered scan mode, use software to specify the following parameters:

- The dataflow as continuous,
- Triggered scan mode as enabled,
- The initial trigger (the trigger source that starts the operation) as any of the supported trigger sources,
- The retrigger mode as an external retrigger (retrigger extra),
- The number of times to scan per trigger or retrigger (also called the multiscan count), and
- The retrigger source as the external digital (TTL) trigger.

Note: If you want to use the external digital (TTL) trigger source as both the initial trigger and the retrigger source, specify the retrigger mode as scan-per-trigger. In this case, you do not have to specify the retrigger source.

Input Triggers

A trigger is an event that occurs based on a specified set of conditions. Acquisition starts when the module detects the initial trigger event and stops when the specified number of samples has been acquired (if the buffer wrap mode is none, described on page 24), or when you stop the operation. Note that when you stop the operation, the module completes the reading of the channel-gain list.

If you are using triggered scan mode, the module continues to acquire data using the specified retrigger source to clock the operation. Refer to page 19 for more information about triggered scan mode.

The KUSB-3116 module supports the following trigger sources:

- Software trigger –A software trigger event occurs when you start the analog input operation (the computer issues a write to the module to begin conversions). Using software, specify the trigger source as a software trigger.
- External digital (TTL) trigger –An external digital (TTL) trigger event occurs when the KUSB-3116 module detects a transition (high-to-low or low-to-high) on the External ADC Trigger input signal connected to the module. Using software, specify the trigger source as a rising-edge external digital trigger (external) or a falling-edge external digital trigger (extra).
- Analog threshold trigger An analog threshold trigger event occurs when the signal on the first channel in the analog input channel-gain list rises above (low-to-high transition) a programmable threshold level. Using software, specify the trigger source as a positive threshold trigger (threshpos).

You can use any one of the 16 analog input channels as the analog trigger. The analog trigger channel must be the first entry in the analog input channel-gain list.

You specify the threshold level in the olDaPutSingleValue function, using D/A subsystem 1. Specify a value between 0 and 255, where 0 equals 0 V and 255 equals \pm 10 V.

Note that you can also use the analog threshold trigger to trigger analog output and digital output operations.

Data Format and Transfer

The KUSB-3116 module uses offset binary data encoding: 0000 to represent negative full-scale and FFFFh to represent positive full-scale. Use software to specify the data encoding as binary.

The ADC outputs FFFFh for above-range signals and 0000 for below-range signals.

Before you begin acquiring data, you must allocate buffers to hold the data. A Buffer Done message is returned whenever a buffer is filled. This allows you to move and/or process the data as needed.

Note: It is recommended that you allocate buffers of 1024 samples or more to optimize the performance of your KUSB-3116 module. If you allocate smaller buffers, the software automatically adjusts the buffer size to 256 samples/buffer, 512 samples/buffer, or 768 samples/buffer, whichever is closest. The rate at which Buffer Done messages are returned depends on the buffer size.

It is recommended that you allocate a minimum of three buffers for analog input operations, specifying one of the following buffer wrap modes in software:

- None –Data is written to multiple allocated input buffers continuously; when no more empty buffers are available, the operation stops. If wrap mode is none, the module guarantees gap-free data; however, the data read may not be what you expect.
- Multiple –Data is written to multiple allocated input buffers
 continuously; when no more empty buffers are available, the
 module overwrites the data in the filled buffers, starting with the
 first location of the first buffer. This process continues
 indefinitely until you stop it. If wrap mode is multiple, the
 module does not guarantee gap-free data.
- **Single** –Data is written to a single input buffer continuously; when the buffer is filled, the module overwrites the data in the buffer starting with the first location of the buffer. This process continues indefinitely until you stop it. Typically, single wrap mode is not used for analog input operations.

Error Conditions

The KUSB-3116 module can report an error if one of the following conditions occurs:

- A/D Over Sample The A/D sample clock rate is too fast. This error is reported if a new A/D sample clock pulse occurs while the ADC is busy performing a conversion from the previous A/D sample clock pulse. The host computer can clear this error. To avoid this error, use a slower sampling rate.
- Input FIFO Overflow The analog input data is not being transferred fast enough to the host computer. The host computer can clear this error, but the error will continue to be generated if the Input FIFO is still full. To avoid this error, close other applications that may be running while you are acquiring data. If this has no effect, try using a computer with a faster processor or reduce the sampling rate.

If one of these error conditions occurs, the module stops acquiring and transferring data to the host computer.

Analog Output Features

This section describes the following features of analog output operations:

- Output resolution, described on this page;
- Analog output channels, described on page 26;
- Output ranges and gains, described on page 28;
- Output triggers, described on page 28,
- Output clocks, described on page 29,
- Data format and transfer, described on page 33; and
- Error conditions, described on page 34.

Output Resolution

The KUSB-3116 module support a fixed resolution of 16-bits for analog output operations. You cannot specify the resolution in software.

Analog Output Channels

The KUSB-3116 module supports four DC-level analog output channels (DAC0, DAC1, DAC2, and DAC3). Refer to the *KUSB-3116 Getting Started Manual* for information about how to wire analog output signals to the module.

The DACs are deglitched to prevent noise from interfering with the output signal. They power up to a value of $0 \text{ V} \pm 10 \text{ mV}$. Unplugging the module resets the DACs to 0 V.

The KUSB-3116 module can output data from a single DAC or sequentially from one or more DACs and/or the digital output port. The following subsections describe how to specify the channels.

Specifying a Single Analog Output Channel

The simplest way to output data from a single DAC is to specify the channel for a single-value analog output operation using software; refer to page 30 for more information about single-value operations.

You can also specify a single DAC using the output channel list, described in the next section.

Specifying Multiple Analog Output Channels and/or the Digital Output Port

You can output data from one or more DACs and/or the digital output port using the output channel list. This feature is particularly useful when you want to correlate the timing of analog and digital output events.

Using software, specify the data flow mode as continuous for the D/A subsystem (described on page 30) and specify the output channels you want to update, where 0 is DAC0, 1 is DAC1, 2 is DAC2, 3 is DAC3, and 4 is the digital output port. You can enter a maximum of 5 entries in the output channel list and the channels must be in order. Note that you can skip a channel in the list, however, if you do not want to update it. For example, if you want to update only DAC3 and the digital output port, specify channels 3 and 4 in the output channel list. If you want to update all the DACs and the digital output port, specify channels 0, 1, 2, 3, and 4 in the output channel list. The channels are output in order from the first entry in the list to the last entry in the list.

The amount of data that you can output for each channel depends on how many channels are in the output channel list. For example, if only one channel is entered in the output channel list, you can output up to 128K values; if all five channels are entered in the output channel list, you an output up to 24K values per channel.

Notes: The maximum rate at which the module can update the output channels depends on the total number of channels in the output channel list. Since the maximum throughput for each output channel is 500 kSamples/s, the module can update two output channels at a rate of 1000 kSamples/s or all five output channels at a rate of 2.5 MSamples/s.

The digital output port is treated like any other channel in the output channel list; therefore, all the clocking, triggering, and conversion modes supported for analog output channels are supported for the digital output port, if you specify the digital output port in the output channel list.

Output Ranges and Gains

Each DAC on the KUSB-3116 module can output bipolar analog output signals in the range of ± 10 V.

Through software, specify the range for the entire analog output subsystem as -10 V to +10 V, and the gain for each DAC as 1.

Output Triggers

A trigger is an event that occurs based on a specified set of conditions. The KUSB-3116 module supports the following output trigger sources:

• **Software trigger** – A software trigger event occurs when you start the analog output operation. Using software, specify the trigger source as a software trigger.

- External digital (TTL) trigger An external digital (TTL) trigger
 event occurs when the KUSB-3116 module detects a transition
 (high-to-low or low-to-high) on the External DAC Trigger input
 signal connected to the module. Using software, specify the
 trigger source as external and the polarity as high-to-low
 transition or low-to-high transition.
- Analog threshold trigger An analog threshold trigger event occurs when the signal on the first channel in the analog input channel-gain list rises above (low-to-high transition) a programmable threshold level. Using software, specify the trigger source as a positive threshold trigger (threshpos).

You can use any one of the 16 analog input channels as the analog trigger. The analog trigger channel must be the first entry in the analog input channel-gain list.

You specify the threshold level in the **olDaPutSingleValue** function, using D/A subsystem 1. Specify a value between 0 and 255, where 0 equals 0 V and 255 equals +10 V.

Note that you can also use the analog threshold trigger to trigger analog input operations.

Output Clocks

The KUSB-3116 module allows you to use one of the following clock sources to pace analog output and digital output operations:

• Internal DAC clock – Using software, specify the clock source as internal and the clock frequency at which to pace the operation. The minimum frequency supported is 0.75 Samples/s; the maximum frequency supported is 500 kSamples/s.

• External DAC clock – An external DAC clock is useful when you want to pace conversions at rates not available with the output sample clock or when you want to pace at uneven intervals.

Connect an external DAC clock to the External DAC Clock input signal on the KUSB-3116 module. Analog output and digital output operations start on the rising edge of the external DAC clock output signal.

Using software, specify the clock source as external. The clock frequency is always equal to the frequency of the external DAC clock output signal that you connect to the module.

Output Conversion Modes

The KUSB-3116 modules supports the following conversion modes:

- **Single-value operations** are the simplest to use but offer the least flexibility and efficiency. Use software to specify the analog output channel, and the value to output from that channel. For a single-value operation, you cannot specify a clock source, trigger source, or buffer. Single-value operations stop automatically when finished; you cannot stop a single-value operation.
- Continuous analog output operations take full advantage of the capabilities of the KUSB-3116 module. In this mode, you can specify an output channel list, clock source, trigger source, buffer, and buffer wrap mode. Two continuous analog output modes are supported: continuously paced and waveform generation mode. These modes are described in the following subsections.

Note that each channel in the output channel list must write the same number of values, use the same output clock (refer to page 29), and use the same output trigger (refer to page 28).

Continuously Paced Analog Output

Use continuously paced analog output mode if you want to accurately control the period between conversions of individual channels in the output channel list.

Use software to fill the output buffer with the values that you want to write to the DACs and to the digital output port, if applicable. For example, if your output channel list contains only DAC0 and the digital output port, specify the values in the output buffer as follows: the first output value for DAC0, the first output value for the digital output port, the second output value for DAC0, the second output value for the digital output port, and so on.

When it detects a trigger, the module starts writing output values to the DACs/ports, as determined by the output channel list. The operation repeats continuously until either all the data is output from the buffers (if buffer wrap mode is none) or you stop the operation (if buffer wrap mode is multiple). Refer to page 33 for more information about buffer modes.

Make sure that the host computer transfers data to the output channel list fast enough so that the list does not empty completely; otherwise, an underrun error results.

To select continuously paced analog output mode, use software to specify the data flow as continuous, the buffer wrap mode as multiple or none, and the trigger source as any of the supported trigger sources. Refer to page 28 for more information about the supported trigger sources.

To stop a continuously paced analog output operation, you can stop sending data to the module, letting the module stop when it runs out of data, or you can perform either an orderly stop or an abrupt stop using software. In an orderly stop, the module finishes outputting the specified number of samples, then stops; all subsequent triggers are ignored. In an abrupt stop, the module stops outputting samples immediately; all subsequent triggers are ignored.

Waveform Generation

Use waveform generation mode if you want to output a waveform repetitively.

The waveform pattern can range from 2 to 120K (122,880) samples if you specify one output channel, 2 to 60K (61,440) samples for two output channels, 2 to 40K (40,960) samples for three output channels, 2 to 30K (30,720) samples for four output channels, or 2 to 24K (24,576) samples for five output channels.

Note: The waveform pattern size must be the same for all output channels, and the total number of samples must be a multiple of the total number of output channels.

Use software to fill the output buffer with the values that you want to write to the channels in the output channel list. For example, if your output channel list contains only DAC0 and the digital output port, specify the values in the output buffer as follows: the first output value for DAC0, the first output value for the digital output port, the second output value for DAC0, the second output value for the digital output port, and so on.

When it detects a trigger, the host computer transfers the entire waveform pattern to the module, and the module starts writing output values to the DACs/ports, as determined by the output channel list. Use software to allocate the memory and specify the waveform pattern.

To select waveform generation mode, use software to specify the data flow as continuous, the buffer wrap mode as single (refer to page 34), and the trigger source as any of the supported trigger sources (refer to page 28).

Data Format and Transfer

Data from the host computer must use offset binary data encoding for analog output signals: 0000 to represent 40 V and FFFFh to represent +10 V. Using software, specify the data encoding as binary.

Before you begin writing data to the DACs/digital output port, you must allocate and fill buffers with the appropriate data. A Buffer Done message is returned whenever a buffer is output. This allows you to output additional data as needed.

Note: It is recommended that you allocate buffers of 1024 samples or more to optimize the performance of your KUSB-3116 module. If you allocate smaller buffers, the software automatically adjusts the buffer size to 256 samples/buffer, 512 samples/buffer, or 768 samples/buffer, whichever is closest. The rate at which Buffer Done messages are returned depends on the buffer size.

Specify one of the following buffer wrap modes in software:

- None –Data is written from multiple output buffers continuously; when no more buffers of data are available, the operation stops. If wrap mode is none, the module guarantees gap-free data; however, the data written may not be what you expect.
- Multiple –Data is written from multiple output buffers continuously; when no more buffers of data are available, the module returns to the first location of the first buffer and continues writing data. This process continues indefinitely until you stop it. If wrap mode is multiple, the module does not guarantee gap-free data.

 Single –Data is written from a single output buffer continuously; when all the data in the buffer is written, the module returns to the first location of the buffer and continues writing data. This process continues indefinitely until you stop it.
 If wrap mode is single and the data in the output channel list fits

If wrap mode is single and the data in the output channel list fits into the allocated output buffer, the data is written once to the module. The module recycles the data, allowing you to output the same pattern continuously without having to reload the data from the output channel list.

Error Conditions

The KUSB-3116 module can report an error if one of the following conditions occurs:

- Output FIFO Underflow The output channel list data is not being sent from the host fast enough. This error is reported if an output sample clock pulse occurs while the output channel list is empty. Note that if no new data is available to be output by either the DACs or the digital output port, the last value placed in the output channel list continues to be output by the DACs/port. You can ignore this error when performing a single-value operation.
- DAC Over Sample error –The output sample clock rate is too fast. This error is reported if a new output sample clock occurs while the module is busy loading the next values from the output channel list into the DACs and/or digital output port. To avoid this error, try slowing down the D/A clock, using a different wrap mode, increasing the buffer sizes, or using more buffers.

Digital I/O Features

This section describes the following features of digital I/O operations:

- Digital I/O lines, described on this page; and
- Operation modes, described on page 36.

Digital I/O Lines

The KUSB-3116 module supports one digital input port, consisting of 16 digital input lines (lines 0 to 15) and one digital output port, consisting of 16 digital output lines (lines 0 to 15).

You can specify the digital I/O line that you want to read or write in a single-value digital I/O operation. Refer to page 36 for more information about single-value operations.

In addition, you can specify the entire digital input port in an analog input channel-gain list to perform a continuous digital input operation, or you can specify the entire digital output port in an output channel list to perform a continuous digital output operation. Refer to page 36 for more information about continuous digital I/O operations.

A digital line is high if its value is 1; a digital line is low if its value is 0. On power up or reset, a low value (0) is output from each of the digital output lines.

The KUSB-3116 module allows you to program the first eight digital input lines to perform interrupt-on-change operations. Refer to page 36 for more information.

The KUSB-3116 module provides a dynamic digital output line that you can update whenever an analog input channel is read. The dynamic digital output line is in addition to the 16 digital output lines. Refer to page 37 for more information.

Operation Modes

The KUSB-3116 module supports the following digital I/O operation modes:

- Single-value operations are the simplest to use but offer the least flexibility and efficiency. You use software to specify the digital I/O port and a gain of 1 (the gain is ignored). Data is then read from or written to all the digital I/O lines. For a single-value operation, you cannot specify a clock or trigger source.
 - Single-value operations stop automatically when finished; you cannot stop a single-value operation.
- Continuous digital I/O takes full advantage of the capabilities of the KUSB-3116 module. You can specify a clock source, scan mode, trigger source, buffer, and buffer wrap mode for the operation.
 - Digital input For digital input operations, enter the digital input port (all 16 digital input lines) as channel 16 in the analog input channel-gain list; refer to page 10 for more information. The input sample clock (internal or external) paces the reading of the digital input port (as well as the acquisition of the analog input and counter/timer channels); refer to page 16 for more information.
 - Digital output For digital output operations, enter the digital output port (all 16 digital output lines) as channel 4 in the output channel list; refer to page 27 for more information. The output clock (internal or external) paces the update of the digital output port (as well as the update of the analog output channels); refer to page 29 for more information.
- Interrupt-on-change operations You can use the Open Layers Control Panel applet to select any of the first eight digital input lines to perform interrupt-on-change operations. When any one of the specified bits changes state, the module reads the entire 16-bit digital input value and generates an interrupt.

• Dynamic digital output is useful for synchronizing and controlling external equipment and allows you to output data to the dynamic digital output line each time an analog input value is acquired. This mode is programmed through the analog input subsystem; refer to page 13 for more information.

Counter/Timer Features

This section describes the following features of counter/timer (C/T) operations:

- C/T channels, described on this page;
- C/T clock sources, described on page 39;
- Gate types, described on page 40;
- Pulse types and duty cycles, described on page 41; and
- C/T operation modes, described on page 42.

C/T Channels

The KUSB-3116 module provides five 32-bit counter/timers. The counters are numbered 0, 1, 2, 3, and 4. Each counter accepts a clock input signal and gate input signal and outputs a pulse (pulse output signal), as shown in Figure 4.

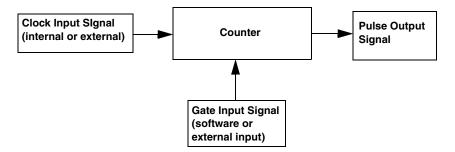


Figure 4: Counter/Timer Channel

To specify the counter/timer to use in software, specify the appropriate C/T subsystem. For example, counter/timer 0 corresponds to C/T subsystem element 0; counter/timer 3 corresponds to C/T subsystem element 3.

Using software, you can also specify one or more of the counter/timers in the analog input channel-gain list. You need two channel-gain list entries to read a 32-bit counter value. The first entry stores the lower 16-bit word, and the second entry stores the upper 16-bit word. If you need only the lower 16-bit word, you do not have to include the second entry. The entire 32-bit count value is latched when the lower 16-bit word is stored. This prevents the counter/timer from incrementing between samples. Refer to page 11 for more information about using C/Ts in the channel-gain list.

C/T Clock Sources

The following clock sources are available for the counter/timers:

- Internal C/T clock The internal C/T clock always uses an 18 MHz time base. Through software, specify the clock source as internal, and specify the clock divider to use to determine the frequency at which to pace the operation (this is the frequency of the Counter *n* Out signal).
- External C/T clock An external C/T clock is useful when you want to pace counter/timer operations at rates not available with the internal C/T clock or if you want to pace at uneven intervals. The frequency of the external C/T clock can range from .004 Hz to 9 MHz.

Connect the external clock to the Counter n Clock input signal on the KUSB-3116 module. Counter/timer operations start on the rising edge of the clock input signal.

Using software, specify the clock source as external.

Note: The external C/T clock (the clock connected to the Counter n Clock input signal) determines how often you want to count events, measure frequency, or measure the time interval between edges.

If you specify a counter/timer in the analog input channel-gain list, the external A/D clock (the clock connected to the External ADC Clock input signal) determines how often you want to read the counter value. Refer to page 16 for more information about the external A/D clock.

Gate Types

The edge or level of the Counter n Gate signal determines when a counter/timer operation is enabled. The KUSB-3116 module provides the following gate types:

- None –A software command enables any counter/timer operation immediately after execution.
- Logic-low level external gate input –Enables a counter/timer operation when the Counter n Gate signal is low, and disables the counter/timer operation when the Counter n Gate signal is high. Note that this gate type is used for event counting and rate generation modes; refer to page 42 for more information about these modes.
- Logic-high level external gate input —Enables a counter/timer operation when the Counter *n* Gate signal is high, and disables a counter/timer operation when the Counter *n* Gate signal is low. Note that this gate type is used for event counting and rate generation modes; refer to page 42 for more information about these modes.

- **Falling-edge external gate input** –Enables a counter/timer operation when a high-to-low transition is detected on the Counter *n* Gate signal. In software, this is called a low-edge gate type. Note that this gate type is used for edge-to-edge measurement, one-shot, and repetitive one-shot mode; refer to page 42 for more information about these modes.
- **Rising-edge external gate input** –Enables a counter/timer operation when a low-to-high transition is detected on the Counter *n* Gate signal. In software, this is called a high-edge gate type. Note that this gate type is used for edge-to-edge measurement, one-shot, and repetitive one-shot mode; refer to page 42 for more information about these modes.

Specify the gate type in software.

Pulse Output Types and Duty Cycles

The KUSB-3116 module can output the following types of pulses from each counter/timer:

- **High-to-low transitions** The low portion of the total pulse output period is the active portion of the counter/timer clock output signal.
- Low-to-high transitions The high portion of the total pulse output period is the active portion of the counter/timer pulse output signal.

You specify the pulse output type in software.

The duty cycle (or pulse width) indicates the percentage of the total pulse output period that is active. For example, a duty cycle of 50 indicates that half of the total pulse output is low and half of the total pulse output is high. You specify the duty cycle in software.

Figure 5 illustrates a low-to-high pulse with a duty cycle of approximately 30%.

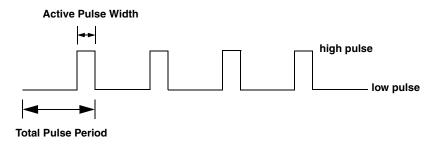


Figure 5: Example of a Low-to-High Pulse Output Type

Counter/Timer Operation Modes

The KUSB-3116 module supports the following counter/timer operation modes:

- Event counting,
- Up/down counting,
- Frequency measurement,
- Edge-to-edge measurement,
- Rate generation,
- · One-shot, and
- Repetitive one-shot.

Note: The active polarity for each counter/timer operation mode is software-selectable.

The following subsections describe these modes in more detail.

Event Counting

Use event counting mode if you want to count the number of rising edges that occur on the Counter n Clock input when the Counter n Gate signal is active (low-level or high-level). Refer to page 40 for information about specifying the active gate type.

You can count a maximum of 4,294,967,296 events before the counter rolls over to 0 and starts counting again.

Using software, specify the counter/timer mode as event counting (count), the C/T clock source as external, and the active gate type as low-level or high-level.

Make sure that the signals are wired appropriately. Refer to the *KUSB-3116 Getting Started Manual* for an example of connecting an event counting application.

Up/Down Counting

Use up/down counting mode if you want to increment or decrement the number of rising edges that occur on the Counter n Clock input, depending on the level of the Counter n Gate signal.

If the Counter n Gate signal is high, the C/T increments; if the specified gate signal is low, the C/T decrements.

Using software, specify the counter/timer mode as up/down counting (up/down), and the C/T clock source as external. Note that you do not specify the gate type in software.

Make sure that the signals are wired appropriately. Refer to the *KUSB-3116Getting Started Manual* for an example of connecting an up/down counting application.

Note: Initialize the counter/timer so that the C/T never increments above FFFFFFFFh or decrements below 0.

Frequency Measurement

Use frequency measurement mode if you want to measure the number of rising edges that occur on the Counter n Clock input over a specified duration.

Using software, specify the counter/timer mode as frequency measurement (count) or event counting (count), the clock source as external, and the time over which to measure the frequency.

You can use the Windows timer (which uses a resolution of 1 ms), or if you need more accuracy than the Windows timer provides, you can connect a pulse of a known duration (such as a one-shot output of another user counter) to the Counter n Gate input signal.

If you use a known pulse, use software to set up the counter/timers as follows:

- 1. Set up one of the counter/timers for one-shot mode, specifying the clock source as internal, the clock frequency, the gate type that enables the operation as rising edge or falling edge, the polarity of the output pulse as high-to-low transition or low-to-high transition, the pulse width, and the duty cycle of the output pulse.
- 2. Set up the counter/timer that will measure the frequency for event counting mode, specifying the type of clock pulses to count and the gate type (this should match the pulse output type of the counter/timer set up for one-shot mode).
- **3.** Start both counters (pulses are not counted until the active period of the one-shot pulse is generated).

- **4.** Read the number of pulses counted. (Allow enough time to ensure that the active period of the one-shot occurred and that events have been counted.)
- **5.** Determine the measurement period using the following equation:

6. Determine the frequency of the clock input signal using the following equation:

Make sure that the signals are wired appropriately. One way to wire a frequency measurement operation is to use the same wiring as an event counting application, but not use an external gate signal. Refer to the *KUSB-3116 Getting Started Manual* for an example of connecting a frequency measurement application.

Edge-to-Edge Measurement

Use edge-to-edge measurement mode if you want to measure the time interval between a specified start edge and a specified stop edge.

The start edge and the stop edge can occur on the rising edge of the Counter n Gate input, the falling edge of the Counter n Gate input, the rising edge of the Counter n Clock input, or the falling edge of the Counter n Clock input. When the start edge is detected, the counter/timer starts incrementing, and continues incrementing until the stop edge is detected. The C/T then stops incrementing until it is enabled to start another measurement.

You can use edge-to-edge measurement to measure the following:

- Pulse width of a signal pulse (the amount of time that a signal pulse is in a high or a low state, or the amount of time between a rising edge and a falling edge or between a falling edge and a rising edge). You can calculate the pulse width as follows:
 - Pulse width = Number of counts/18 MHz
- Period of a signal pulse (the time between two occurrences of the same edge rising edge to rising edge or falling edge to falling edge). You can calculate the period as follows:
 - Period = 1/Frequency
 - Period = Number of counts/18 MHz
- Frequency of a signal pulse (the number of periods per second).
 You can calculate the frequency as follows:
 - Frequency = 18 MHz/Number of Counts

When the operation is complete, you can read the value of the counter.

Using software, specify the counter/timer mode as edge-to-edge measurement mode (measure), the C/T clock source as internal, the start edge type, and the stop edge type.

Make sure that the signals are wired appropriately. Refer to the *KUSB-3116 Getting Started Manual* for an example of connecting an edge-to-edge measurement application.

Rate Generation

Use rate generation mode to generate a continuous pulse output signal from the Counter *n* Out line; this mode is sometimes referred to as continuous pulse output or pulse train output. You can use this pulse output signal as an external clock to pace other operations, such as analog input, analog output, or other counter/timer operations.

The pulse output operation is enabled whenever the Counter n Gate signal is at the specified level. While the pulse output operation is enabled, the counter outputs a pulse of the specified type and frequency continuously. As soon as the operation is disabled, rate generation stops.

The period of the output pulse is determined by the C/T clock source (either internal using a clock divider, or external). You can output pulses using a maximum frequency of 9 MHz (this is the frequency of the Counter n Out signal). Refer to page 39 for more information about the C/T clock sources.

Using software, specify the counter/timer mode as rate generation (rate), the C/T clock source as either internal or external, the clock divider (for an internal clock), the polarity of the output pulses (high-to-low transition or low-to-high transition), the duty cycle of the output pulses, and the active gate type (low-level or high-level). Refer to page 41 for more information about pulse output signals and to page 40 for more information about gate types.

Make sure that the signals are wired appropriately. Refer to the *KUSB-3116 Getting Started Manual* for an example of connecting a rate generation application.

One-Shot

Use one-shot mode to generate a single pulse output signal from the Counter n Out line when the specified edge is detected on the Counter n Gate signal. You can use this pulse output signal as an external digital (TTL) trigger to start other operations, such as analog input or analog output operations.

After the single pulse is output, the one-shot operation stops. All subsequent clock input signals and gate input signals are ignored.

The period of the output pulse is determined by the C/T clock source (either internal using a clock divider, or external). Note that in one-shot mode, the internal C/T clock is more useful than an external C/T clock; refer to page 39 for more information about the C/T clock sources.

Using software, specify the counter/timer mode as one-shot, the clock source as internal (recommended), the clock divider, the polarity of the output pulse (high-to-low transition or low-to-high transition), the duty cycle of the output pulse, and the active gate type (rising edge or falling edge). Refer to page 41 for more information about pulse output types and to page 40 for more information about gate types.

Note: In the case of a one-shot operation, use a duty cycle as close to 100% as possible to output a pulse immediately. Using a duty cycle closer to 0% acts as a pulse output delay.

Make sure that the signals are wired appropriately. Refer to the *KUSB-3116 Getting Started Manual* for an example of connecting a one-shot application.

Repetitive One-Shot

Use repetitive one-shot mode to generate a pulse output signal from the Counter *n* Out line whenever the specified edge is detected on the Counter *n* Gate signal. You can use this mode to clean up a poor clock input signal by changing its pulse width, then outputting it.

The module continues to output pulses until you stop the operation. Note that any Counter n Gate signals that occur while the pulse is being output are not detected by the module.

The period of the output pulse is determined by the C/T clock source (either internal using a clock divider, or external). Note that in repetitive one-shot mode, the internal C/T clock is more useful than an external clock; refer to page 39 for more information about the C/T clock sources.

Using software, specify the counter/timer mode as repetitive one-shot (oneshot-rpt), the polarity of the output pulses (high-to-low transition or low-to-high transition), the duty cycle of the output pulses, the C/T clock source as internal (recommended), the clock divider, and the active gate type (rising edge or falling edge). Refer to page 41 for more information about pulse output types and to page 40 for more information about gates.

Note: In the case of a repetitive one-shot operation, use a duty cycle as close to 100% as possible to output a pulse immediately. Using a duty cycle closer to 0% acts as a pulse output delay.

Make sure that the signals are wired appropriately. Refer to the *KUSB-3116 Getting Started Manual* for an example of connecting a repetitive one-shot application.

Supported Device Driver Capabilities

The KUSB-3116 Device Driver provides support for the analog input (A/D), analog output (D/A), digital input (DIN), digital output (DOUT), and counter/timer (C/T) subsystems. For information on how to configure the device driver, refer to the KUSB-3116 Getting Started Manual.

Table 3 summarizes the features available for use with the DataAcq SDK and the KUSB-3116 module. The DataAcq SDK provides functions that return support information for specified subsystem capabilities at run-time.

The first row in the table lists the subsystem types. The first column in the table lists all possible subsystem capabilities. A description of each capability is followed by the parameter used to describe that capability in the DataAcq SDK.

Note: Blank fields represent unsupported options.

The DataAcq SDK uses the functions olDaGetSSCaps (for those queries starting with OLSSC) and olDaGetSSCapsEx (for those queries starting with OLSSCE) to return the supported subsystem capabilities for a device.

For more information, refer to the description of these functions in the DataAcq SDK online help. See the *DataAcq User's Manual* for information on launching this help file.

Table 3: KUSB-3116 Supported Options

		KUSB-3116	A/D	D/A	DIN	DOUT	SRL	C/T
		Total Subsystems on Module	1	1	1 ^a	1 ^b	0	5
		Single-Value Operation Support OLSSC_SUP_SINGLEVALUE	Yes	Yes	Yes	Yes		
		Continuous Operation Support OLSSC_SUP_CONTINUOUS	Yes	Yes	Yes ^c	Yes ^d		Yes ^e
		Continuous Operation until Trigger Event Support OLSSC_SUP_CONTINUOUS_PRETRIG						
	Data Flow Mode	Continuous Operation before and after Trigger Event OLSSC_SUP_CONTINUOUS_ ABOUTTRIG						
	ח	DT-Connect Support OLSSC_SUP_DTCONNECT						
		Continuous DT-Connect Support OLSSC_SUP_DTCONNECT_ CONTINUOUS						
		Burst DT-Connect Support OLSSC_SUP_DTCONNECT_BURST						
Sim.	Oper.	Simultaneous Start List Support OLSSC_SUP_SIMULTANEOUS_START	Yes	Yes				
Pause	Oper.	Pause Operation Support OLSSC_SUP_PAUSE						
Wind.	Mess.	Asynchronous Operation Support OLSSC_SUP_POSTMESSAGE	Yes	Yes	Yes ^f			Yes
	Buffering	Buffer Support OLSSC_SUP_BUFFERING	Yes	Yes	Yes ^g	Yes ^h		Yes ⁱ
6	Butte	Single Buffer Wrap Mode Support OLSSC_SUP_WRPSINGLE	Yes	Yes	Yes	Yes		Yes

Table 3: KUSB-3116 Supported Options (cont.)

	KUSB-3116	A/D	D/A	DIN	DOUT	SRL	C/T
	Total Subsystems on Module	1	1	1 ^a	1 ^b	0	5
ont.)	Multiple Buffer Wrap Mode Support OLSSC_SUP_WRPMULTIPLE	Yes	Yes				
Buffering (cont.)	Inprocess Buffer Flush Support OLSSC_SUP_INPROCESSFLUSH	Yes ^j					
Buffe	Waveform Generation Mode Support OLSSC_SUP_WAVEFORM_MODE		Yes				
	Number of DMA Channels OLSSC_NUMDMACHANS	0	0	0	0		0
DMA	Supports Gap Free Data with No DMA OLSSC_SUP_GAPFREE_NODMA	Yes	Yes				
Δ	Supports Gap Free Data with Single DMA OLSSC_SUP_GAPFREE_SINGLEDMA						
	Supports Gap Free Data with Dual DMA OLSSC_SUP_GAPFREE_DUALDMA						
	Triggered Scan Support OLSSC_SUP_TRIGSCAN	Yes					
e Qe	Maximum Number of CGL Scans per Trigger OLSSC_MAXMULTISCAN	256 ^k	0	0	0		0
friggered Scan Mode	Supports Scan per Trigger Event Triggered Scan OLSSC_SUP_RETRIGGER_SCAN_ PER_TRIGGER	Yes					
Trig	Supports Internal Retriggered Triggered Scan OLSSC_SUP_RETRIGGER_INTERNAL	Yes					
	Extra Retrigger Support OLSSC_SUP_RETRIGGER_EXTRA	Yes					

2

Table 3: KUSB-3116 Supported Options (cont.)

	KUSB-3116	A/D	D/A	DIN	DOUT	SRL	C/T
	Total Subsystems on Module	1	1	1 ^a	1 ^b	0	5
Trig. Scan Mode (cont.)	Maximum Retrigger Frequency OLSSCE_MAXRETRIGGER	250 kHz	250 kHz	0	0		0
Trig. Mode	Minimum Retrigger Frequency OLSSCE_MINRETRIGGER	0.75 Hz	0.75 Hz	0	0		0
	Maximum Channel-Gain List Depth OLSSC_CGLDEPTH	1024	5	1	1		0
	Sequential Channel-Gain List Support OLSSC_SUP_SEQUENTIAL_CGL	Yes	Yes				
Channel-Gain List	Zero Start Sequential Channel-Gain List Support OLSSC_SUP_ZEROSEQUENTIAL_CGL	Yes	Yes				
hannel-(Random Channel-Gain List Support OLSSC_SUP_RANDOM_CGL	Yes					
Ö	Simultaneous Sample-and-Hold Support OLSSC_SUP_SIMULTANEOUS_SH						
	Channel List Inhibit Support OLSSC_SUP_CHANNELLIST_ INHIBIT	Yes					
	Programmable Gain Support OLSSC_SUP_PROGRAMGAIN	Yes					
Gain	Number of Gains OLSSC_NUMGAINS	4	1	1 1	1		0
	AutoRanging Support OLSSC_SINGLEVALUE_AUTORANGE						
Synchronous Digital I/O	Synchronous Digital I/O Support OLSSC_SUP_SYNCHRONOUS_ DIGITALIO	Yes					
Synch Digit	Maximum Synchronous Digital I/O Value OLSSC_MAXDIGITALIOLIST_VALUE	1	65,535	0	0		0

Table 3: KUSB-3116 Supported Options (cont.)

	KUSB-3116	A/D	D/A	DIN	DOUT	SRL	C/T
	Total Subsystems on Module	1	1	1 ^a	1 ^b	0	5
I/O Channels	Number of Channels OLSSC_NUMCHANNELS	27 or 42 ^l	4	1	1		0
	SE Support OLSSC_SUP_SINGLEENDED	Yes					
Channel Type	SE Channels OLSSC_MAXSECHANS DI Support	16	0	0	0		0
ပ်	OLSSC_SUP_DIFFERENTIAL DI Channels OLSSC_MAXDICHANS	Yes 8	Yes 4	Yes 1	Yes 1		0
Filters	Filter/Channel Support OLSSC_SUP_FILTERPERCHAN						
HII.	Number of Filters OLSSC_NUMFILTERS	1	1	1	1		0
Ranges	Number of Voltage Ranges OLSSC_NUMRANGES	1	1	0	0		0
Ran	Range per Channel Support OLSSC_SUP_RANGEPERCHANNEL						
Resolution	Software Programmable Resolution OLSSC_SUP_SWRESOLUTION						
Reso	Number of Resolutions OLSSC_NUMRESOLUTIONS	1 ^m	1 ^m	1	1		1
Data Encoding	Binary Encoding Support OLSSC_SUP_BINARY	Yes	Yes	Yes	Yes		Yes
De Encc	Twos Complement Support OLSSC_SUP_2SCOMP						

3

Table 3: KUSB-3116 Supported Options (cont.)

	KUSB-3116	A/D	D/A	DIN	DOUT	SRL	C/T
	Total Subsystems on Module	1	1	1 ^a	1 ^b	0	5
	Software Trigger Support OLSSC_SUP_SOFTTRIG	Yes	Yes	Yes	Yes		Yes
	External Trigger Support OLSSC_SUP_EXTERNTRIG	Yes ⁿ	Yes				Yes
	Positive Threshold Trigger Support OLSSC_SUP_THRESHTRIGPOS	Yes	Yes				
ers	Negative Threshold Trigger Support OLSSC_SUP_THRESHTRIGNEG						
Triggers	Analog Event Trigger Support OLSSC_SUP_ANALOGEVENTTRIG						
	Digital Event Trigger Support OLSSC_SUP_DIGITALEVENTTRIG						
	Timer Event Trigger Support OLSSC_SUP_TIMEREVENTTRIG						
	Number of Extra Triggers OLSSC_NUMEXTRATRIGGERS	1	0	0	0		0
	Internal Clock Support OLSSC_SUP_INTCLOCK	Yes	Yes	Yes	Yes		Yes
	External Clock Support OLSSC_SUP_EXTCLOCK	Yes	Yes				Yes
Clocks	Simultaneous Input/Output on a Single Clock Signal OLSSC_SUP_SIMULTANEOUS_ CLOCKING	No	Yes				
	Number of Extra Clocks OLSSC_NUMEXTRACLOCKS	0	0	0	0		0
	Base Clock Frequency OLSSCE_BASECLOCK	18 MHz	18 MHz	0	0		18 MHz
	Maximum External Clock Divider OLSSCE_MAXCLOCKDIVIDER	1	1	1	1		2,147, 483,647

Table 3: KUSB-3116 Supported Options (cont.)

	KUSB-3116	A/D	D/A	DIN	DOUT	SRL	C/T
	Total Subsystems on Module	1	1	1 ^a	1 ^b	0	5
ont.)	Minimum External Clock Divider OLSSCE_MINCLOCKDIVIDER	1	1	1	1		2
Clocks (cont.)	Maximum Throughput OLSSCE_MAXTHROUGHPUT	500 kHz	500 kHz	0	0		9 MHz
Cloc	Minimum Throughput OLSSCE_MINTHROUGHPUT	0.75 Hz	0.75 Hz	0	0		0.004 Hz
	Cascading Support OLSSC_SUP_CASCADING						
	Event Count Mode Support OLSSC_SUP_CTMODE_COUNT						Yes
	Generate Rate Mode Support OLSSC_SUP_CTMODE_RATE						Yes
	One-Shot Mode Support OLSSC_SUP_CTMODE_ONESHOT						Yes
ıers	Repetitive One-Shot Mode Support OLSSC_SUP_CTMODE_ONESHOT_ RPT						Yes
Counter/Timers	Up/Down Counting Mode Support OLSSC_SUP_CTMODE_UP_DOWN						Yes
Cou	Edge-to-Edge Measurement Mode Support OLSSC_SUP_CTMODE_MEASURE						Yes
	Continuous Edge-to-Edge Measurement Mode Support OLSSC_SUP_CTMODE_CONT_ MEASURE						15°
	High to Low Output Pulse Support OLSSC_SUP_PLS_HIGH2LOW						Yes
	Low to High Output Pulse Support OLSSC_SUP_PLS_LOW2HIGH						Yes

2

Table 3: KUSB-3116 Supported Options (cont.)

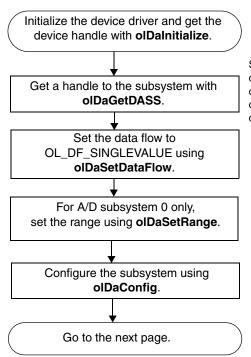
	KUSB-3116	A/D	D/A	DIN	DOUT	SRL	C/T
	Total Subsystems on Module	1	1	1 ^a	1 ^b	0	5
	None (internal) Gate Type Support OLSSC_SUP_GATE_NONE						Yes
Counter/Timers (cont.)	High Level Gate Type Support OLSSC_SUP_GATE_HIGH_LEVEL						Yes ^p
	Low Level Gate Type Support OLSSC_SUP_GATE_LOW_LEVEL						Yes ^p
	High Edge Gate Type Support OLSSC_SUP_GATE_HIGH_EDGE						Yes ^p
	Low Edge Gate Type Support OLSSC_SUP_GATE_LOW_EDGE						Yes ^p
	Level Change Gate Type Support OLSSC_SUP_GATE_LEVEL						
	High Level Gate Type with Input Debounce Support OLSSC_SUP_GATE_HIGH_LEVEL_ DEBOUNCE						
	Low Level Gate Type with Input Debounce Support OLSSC_SUP_GATE_LOW_LEVEL_ DEBOUNCE						
	High Edge Gate Type with Input Debounce Support OLSSC_SUP_GATE_HIGH_EDGE_ DEBOUNCE						
	Low Edge Gate Type with Input Debounce Support OLSSC_SUP_GATE_LOW_EDGE_ DEBOUNCE						
	Level Change Gate Type with Input Debounce Support OLSSC_SUP_GATE_LEVEL_ DEBOUNCE						

Table 3: KUSB-3116 Supported Options (cont.)

	KUSB-3116	A/D	D/A	DIN	DOUT	SRL	C/T
	Total Subsystems on Module	1	1	1 ^a	1 ^b	0	5
Interrupt	Interrupt Support OLSSC_SUP_INTERRUPT			Yes			Yes
FIFOs	FIFO in Data Path Support OLSSC_SUP_FIFO						
	Output FIFO Size OLSSC_FIFO_SIZE_IN_K		128 ^q				
Processor	Data Processing Capability OLSSC_SUP_PROCESSOR	Yes	Yes	Yes	Yes		Yes
Software Calibration	Software Calibration Support OLSSC_SUP_SWCAL	Yes ^r	Yes ^r				

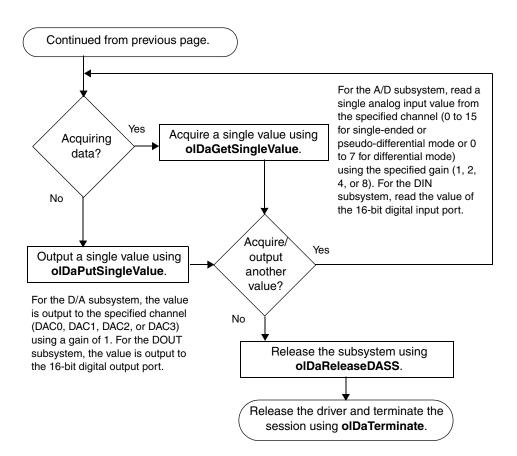
- a. The DIN subsystem contains 16 digital input lines.
- b. The DOUT subsystem contains 16 digital output lines.
- c. The DIN subsystem supports continuous mode by allowing you to read the digital input port (all 16 digital input lines) using the analog input channel-gain list.
- d. The DOUT subsystem supports continuous mode by allowing you to output data from the digital output port (all 16 digital output lines) using the output channel list.
- e. The C/T subsystem supports continuous mode by allowing you to read the value of one or more of the five counter/timer channels using the analog input channel-gain list.
- f. The DIN subsystem supports the posting of messages only if the digital input port is configured for continuous mode and if you used the Open Layers Control Panel applet to select any of the first eight digital input lines to perform interrupt-on-change operations. The device driver posts the OLDA_WM_EVENTDONE_WITH_DATA message when a bit changes state. The 16-bit value of the digital input port is also returned.
- g. The DIN subsystem supports buffering by allowing you to read the digital input port (all 16 digital input lines) using the analog input channel-gain list.
- h. The DOUT subsystem supports buffering by allowing you to output data from the digital output port (all 16 digital output lines) using the output channel list.
- The C/T subsystem supports buffering by allowing you to read the value of one or more of the five counter/timer channels using the analog input channel-gain list.
- j. The data from the KUSB-3116 module is transferred to the host in 4,096-byte (2,048-sample) segments. If the application calls olDaFlushFromBufferInprocess before the module has transferred 2,048 samples to the host, the buffer on the done queue will contain 0 samples. Your application program must deal with these situations when flushing an inprocess buffer.

- k. The channel-gain list depth of 1024 entries in conjunction with a multiscan of 256 provides an effective channel-gain list depth of up to 256K entries.
- 1. Channels 0 to 15 read the analog input channels; channel 16 reads all 16 bits from the DIN subsystem; channels 17 to 26 read the C/T channels.
- m. The resolution of the KUSB-3116 module is 16 bits.
- n. OL_TRG_EXTERN is the rising-edge external digital (TTL) trigger input; OL_TRG_EXTRA is the falling-edge digital external (TTL) trigger input; OL_TRG_THRESHPOS is the positive-edge analog threshold trigger from an analog input channel.
- o. Edge-to-edge measurement mode is supported on both the gate and clock signals; rising and falling edges are both supported.
- p. High-edge and low-edge are supported for one-shot and repetitive one-shot modes. High-level and low-level are supported for event counting, up/down counting, frequency measurement, edge-to-edge measurement, and rate generation modes.
- $\rm q.~$ At the present time, this query is supported for the KUSB-3116 module only. For this module, the output FIFO size is always 128 K.
- r. The KUSB-3116 module is calibrated at the factory and should not require recalibration.

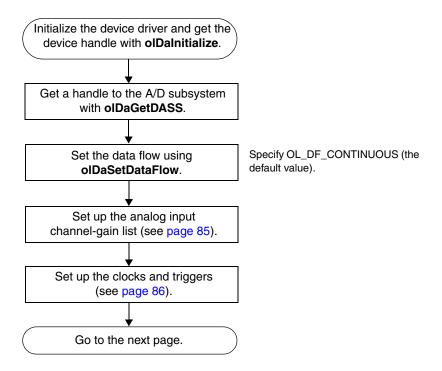

Programming Flowcharts

Single-Value Operations
Continuous A/D Operations 67
Continuous D/A Operations
Continuous Digital Input Operations
Continuous Digital Output Operations
Event Counting Operations
Up/Down Counting Operations
Frequency Measurement Operations
Edge-to-Edge Measurement Operations
Pulse Output Operations
Simultaneous Operations

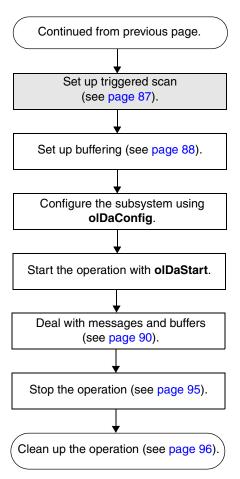
The following flowcharts show the steps required to perform data acquisition operations using DT-Open Layers. For illustration purposes, the DataAcq SDK functions are shown; however, the concepts apply to all DT-Open Layers software.


Note that many steps represent several substeps; if you are unfamiliar with the detailed operations involved with any one step, refer to the indicated page for detailed information. Optional steps appear in shaded boxes.

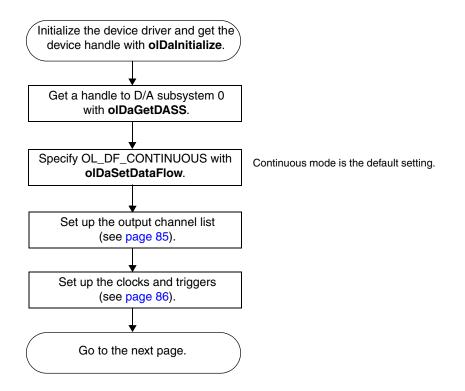
Single-Value Operations



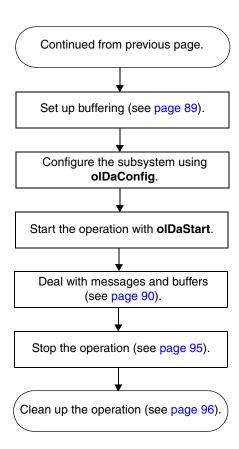
Specify A/D subsystem 0 for an analog input operation, D/A subsystem 0 for an analog output operation, DIN subsystem 0 for a digital input operation, or DOUT subsystem 0 for a digital output operation.


Single-Value Operations (cont.)

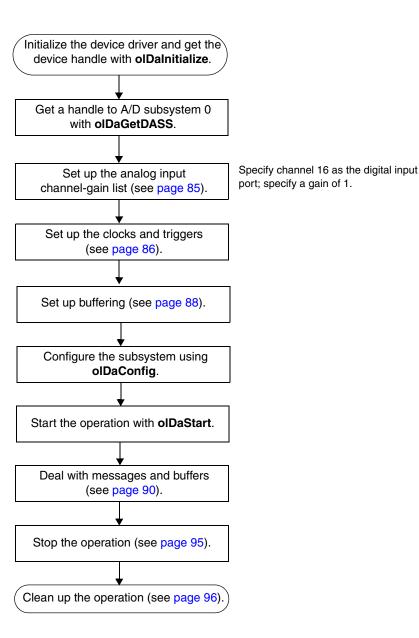
Continuous A/D Operations

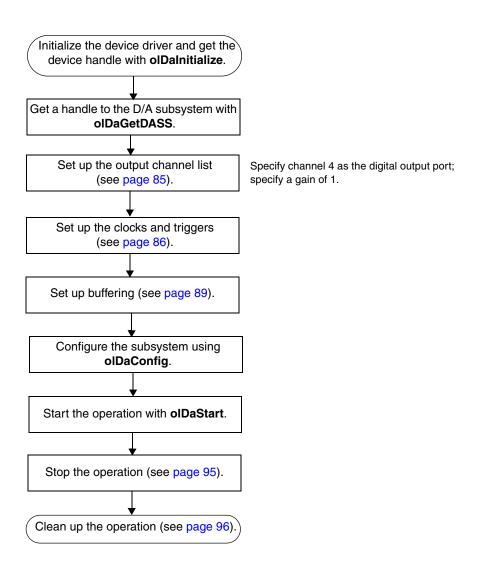


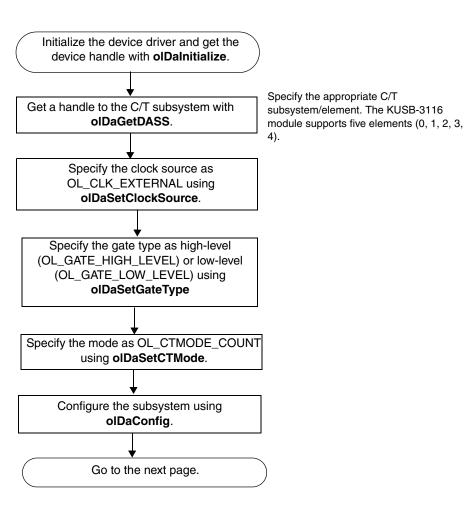
Continuous A/D Operations (cont.)

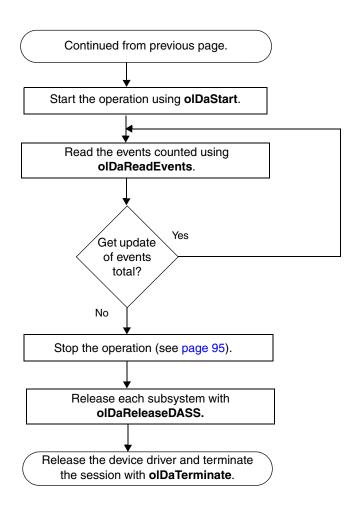


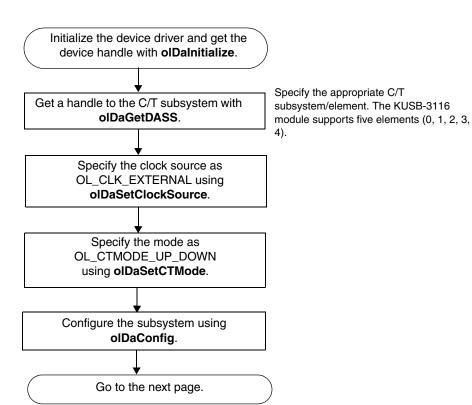
After you configure the subsystem, you can use olDaGetClockFrequency to return the actual frequency of the internal clock; you can use olDaGetRetriggerFrequency to return the actual frequency of the internal retrigger clock.

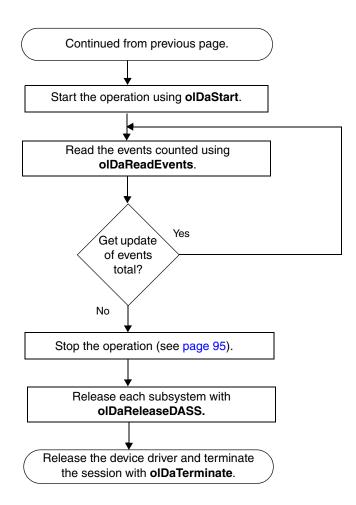

Continuous D/A Operations


Continuous D/A Operations (cont.)

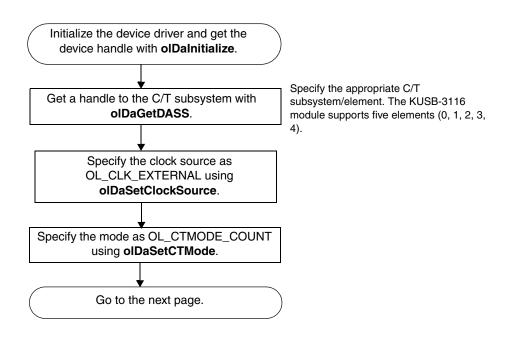

Continuous Digital Input Operations


Continuous Digital Output Operations

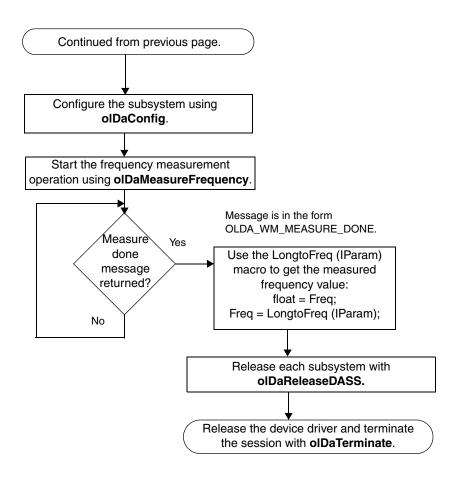

Event Counting Operations


Event Counting Operations (cont.)

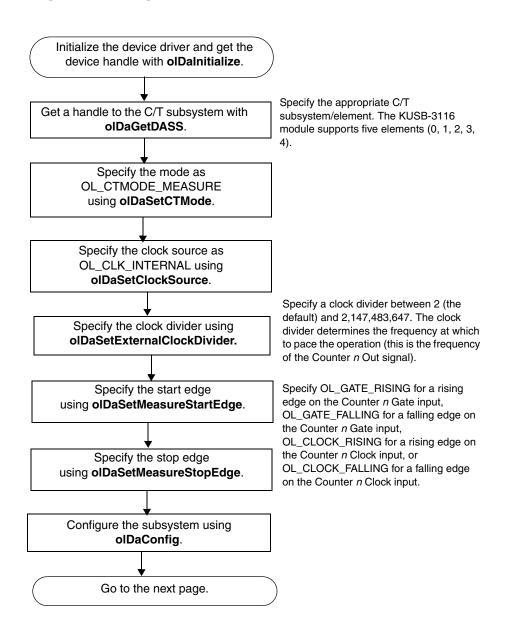
Up/Down Counting Operations

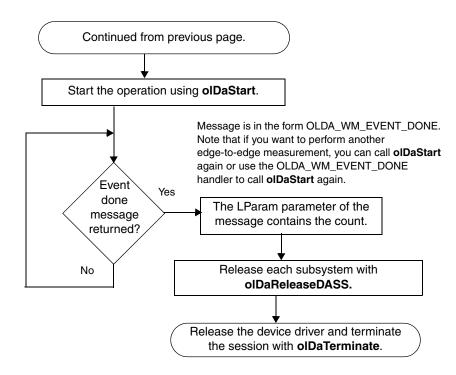


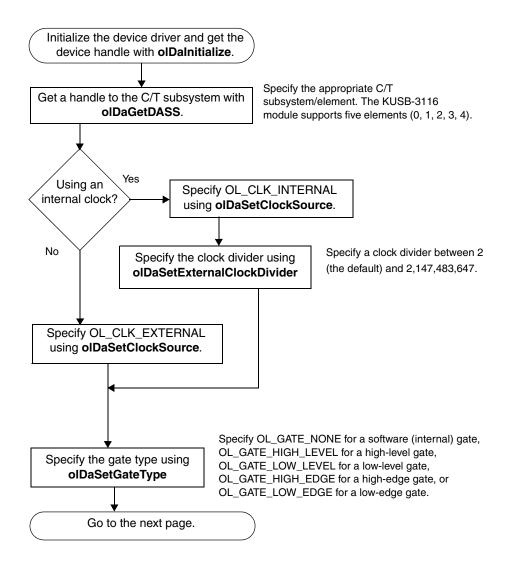
Up/Down Counting Operations (cont.)

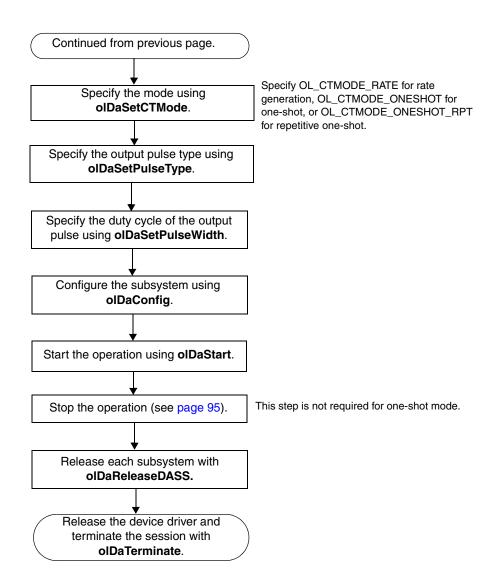


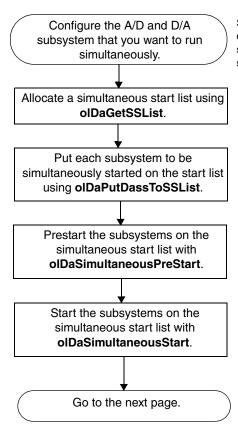
Frequency Measurement Operations


The following flowchart shows the steps required to perform a frequency measurement operation using the Windows timer. If you need more accuracy the Windows timer provides, refer to page 44 of this manual or to your *DataAcq SDK User's Manual* for more information.

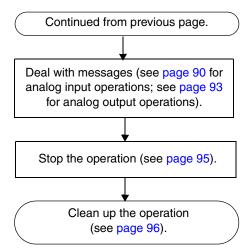

Frequency Measurement Operations (cont.)


Edge-to-Edge Measurement Operations

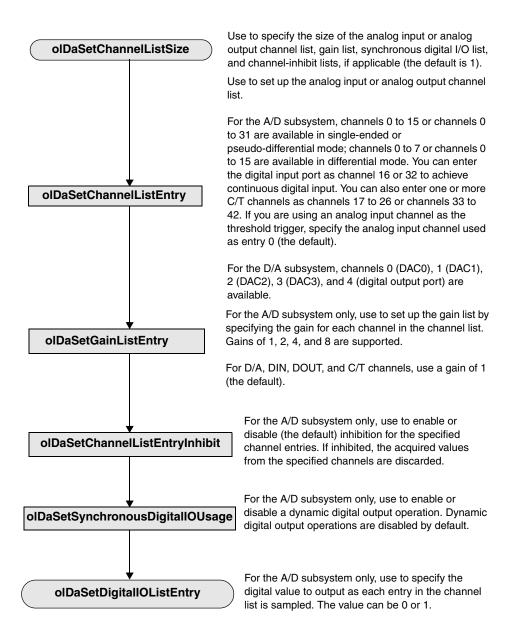

Edge-to-Edge Measurement Operations (cont.)


Pulse Output Operations

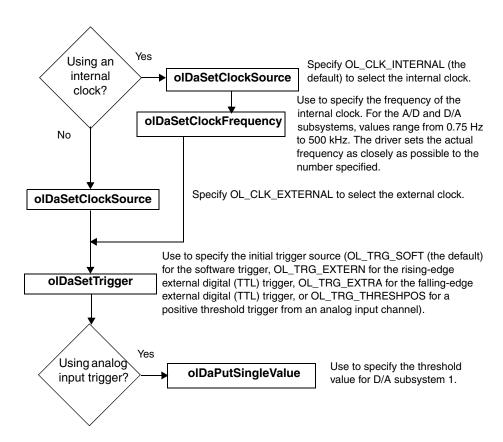
Pulse Output Operations (cont.)

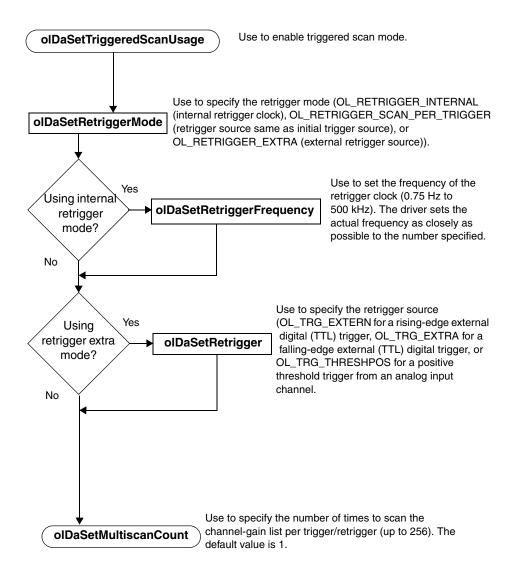


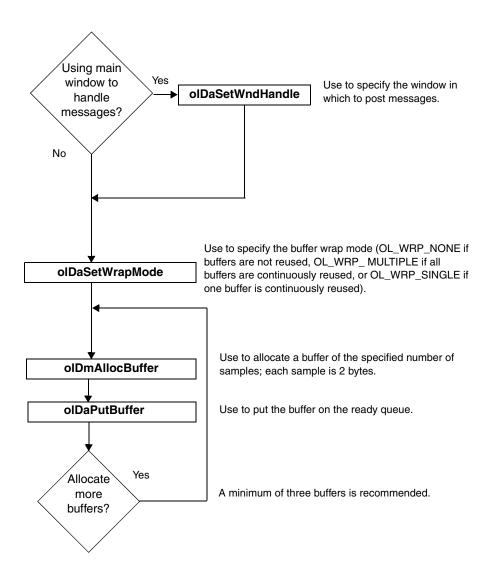
Simultaneous Operations

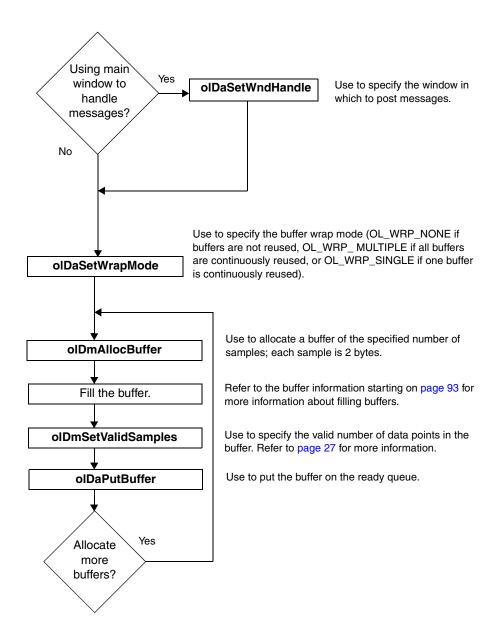


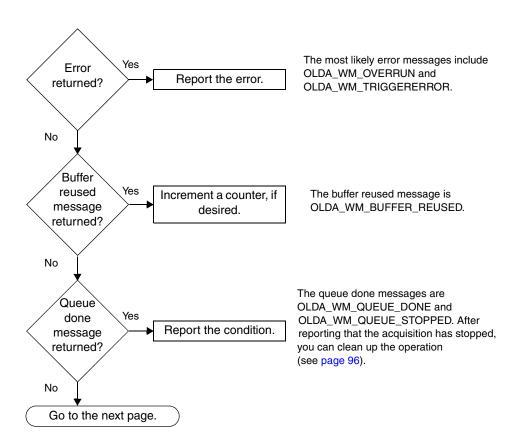
See the previous flow diagrams in this chapter; note that you cannot perform single-value operations simultaneously.

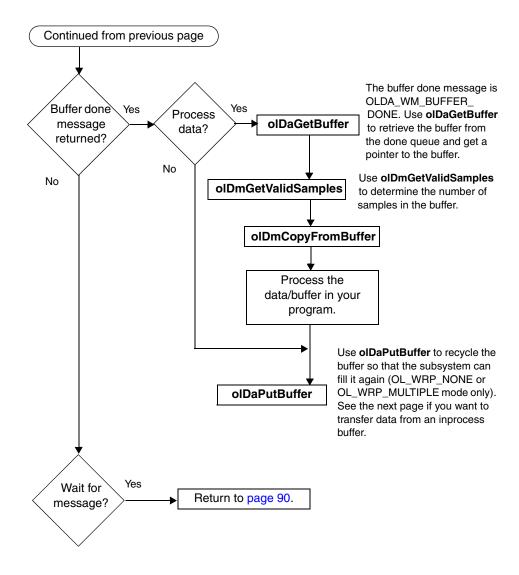

Simultaneous Operations (cont.)

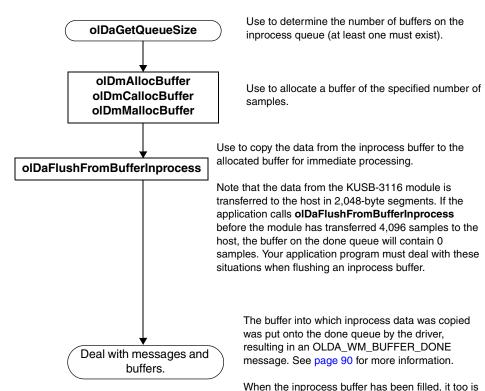

Set Up Channel List and Channel Parameters


Set Clocks and Triggers

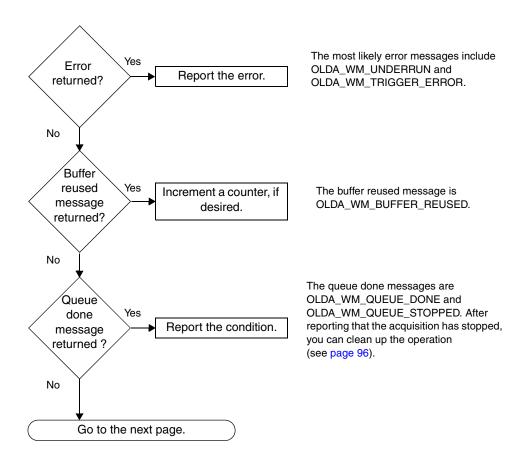

Set Up Triggered Scan Mode


Set Up A/D Buffering

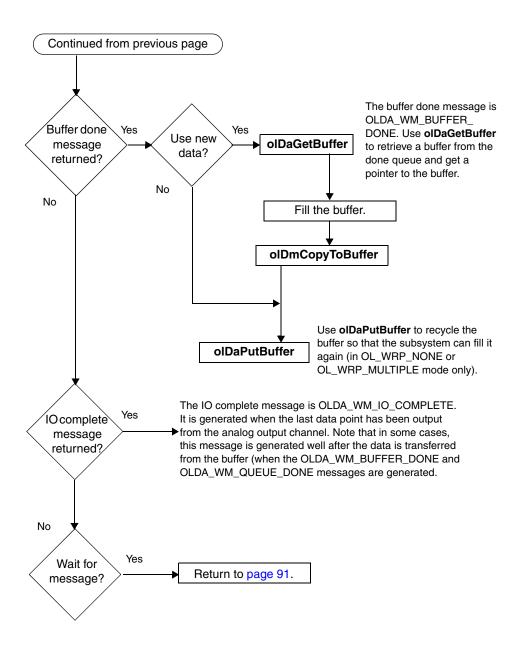

Set Up D/A Buffering


Deal with A/D Messages and Buffers

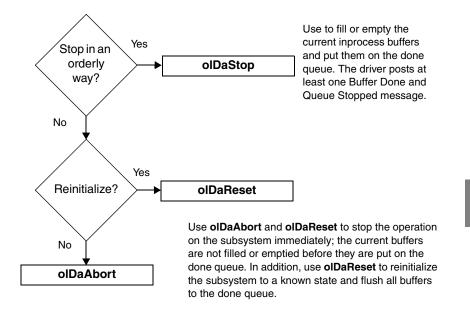
Deal with A/D Messages and Buffers (cont.)

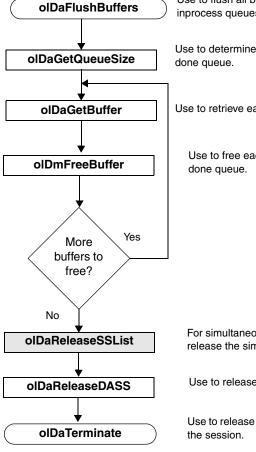


Transfer Data from an Inprocess Buffer



OLDA_WM_BUFFER_DONE message is posted. However, the number of valid samples is equal to the queue's maximum samples minus what was copied out.


Deal with D/A Messages and Buffers


Deal with D/A Messages and Buffers (cont.)

Stop the Operation

Clean Up the Operation

Use to flush all buffers on the ready and/or inprocess queues to the done queue.

Use to determine the number of buffers on the done queue.

Use to retrieve each buffer on the done queue.

Use to free each buffer retrieved from the done queue.

For simultaneous operations only, use to release the simultaneous start list.

Use to release each subsystem.

Use to release the device driver and terminate the session.

Troubleshooting

General Checklist	98
Service and Support	101

General Checklist

Should you experience problems using a KUSB-3116 module, perform the following steps:

- 1. Read all the documentation provided for your product. Make sure that you have added any "Read This First" information to your manual and that you have used this information.
- Check the CD for any README files and ensure that you have used the latest installation and configuration information available.
- **3.** Check that your system meets the requirements stated in the *KUSB-3116 Getting Started Manual*.
- **4.** Check that you have installed your hardware properly using the instructions in the *KUSB-3116 Getting Started Manual*.
- **5.** Check that you have installed and configured the device driver properly using the instructions in the *KUSB-3116 Getting Started Manual*.
- **6.** Check that you have wired your signals properly using the instructions in the *KUSB-3116 Getting Started Manual*.

If you still experience problems, try using the information in Table 4 to isolate and solve the problem. If you cannot identify the problem, refer to page 99.

Table 4: Troubleshooting Problems

Symptom	Possible Cause	Possible Solution
Module does not respond.	The module configuration is incorrect.	Check the configuration of your device driver; see the instructions in the KUSB-3116 Getting Started Manual.
	The module is damaged.	Contact Keithley for technical support; refer to page 101.
Intermittent operation.	Loose connections or vibrations exist.	Check your wiring and tighten any loose connections or cushion vibration sources; see the instructions in the KUSB-3116 Getting Started Manual.
	The module is overheating.	Check environmental and ambient temperature; consult the module's specifications on page 112 of this manual and the documentation provided by your computer manufacturer for more information.
	Electrical noise exists.	Check your wiring and either provide better shielding or reroute unshielded wiring; see the instructions in the KUSB-3116 Getting Started Manual.
Device failure error reported.	The KUSB-3116 module cannot communicate with the Microsoft bus driver or a problem with the bus driver exists.	Check your cabling and wiring and tighten any loose connections; see the instructions in the KUSB-3116 Getting Started Manual.
	The KUSB-3116 module was removed while an operation was being performed.	Ensure that your KUSB-3116 module is properly connected; see the instructions in the KUSB-3116 Getting Started Manual.

Table 4: Troubleshooting Problems (cont.)

Symptom	Possible Cause	Possible Solution
Data appears to be invalid.	An open connection exists.	Check your wiring and fix any open connections; see the instructions in the KUSB-3116 Getting Started Manual.
	A transducer is not connected to the channel being read.	Check the transducer connections; see the instructions in the KUSB-3116 Getting Started Manual.
	The module is set up for differential inputs while the transducers are wired as single-ended inputs or vice versa.	Check your wiring and ensure that what you specify in software matches your hardware configuration; see the instructions in the KUSB-3116 Getting Started Manual.
	The KUSB-3116 module is out of calibration.	KUSB-3116 modules are calibrated at the factory and should not require recalibration. Contact Keithley.
Computer does not boot.	The power supply of the computer is too small to handle all the system resources.	Check the power requirements of your system resources and, if needed, get a larger power supply; consult the module's specifications on page 112 of this manual.
USB 2.0 is not recognized.	Your operating system does not have the appropriate Service Pack installed.	Ensure that you load the appropriate Windows Service Pack (version 1 for Windows XP or version 4 for Windows 2000). If you are unsure of whether you are using USB 2.0 or USB 1.1, run the Open Layers Control Panel applet, described in the KUSB-3116 Getting Started Manual.
	Standby mode is enabled on your PC.	For some PCs, you may need to disable standby mode on your system for proper USB 2.0 operation. Consult Microsoft for more information.

5

Service and Support

For the latest tips, software fixes, and other product information, you can always access our World-Wide Web site at the following address: http://www.keithley.com

If you have difficulty using a KUSB-3116 module, the Keithley Technical Support Department is available to provide technical assistance.

For the most efficient service, complete the form on page 102 and be at your computer when you call for technical support. This information helps to identify specific system and configuration-related problems and to replicate the problem in house, if necessary.

Information Required for Technical Support

Name:	Phone	
Contract Number:		
Address:		
Hardware product(s):		
serial number:		
configuration:		
Device driver:		
	version:	
Software:		
serial number:		
PC make/model:		
operating system:		
Windows version:		
processor:		
RAM:		
network/number of users:		
graphics adapter:	data bus:	
I have the following modules and applications installed	in my avatam:	
I have the following modules and applications installed	III IIIy System <u>.</u>	
I am encountering the following problem(s):		
ram encountering the following problem(s).		
and have received the following error messages/codes	•	
and have received the following error messages/seace		
I have run the module diagnostics with the following res	sults:	
Thave full the module diagnostics with the following rea	Suito.	
You can reproduce the problem by performing these st	ens:	
1		
2		
		
3		
<u> </u>		

Specifications

Table 5 lists the specifications for the A/D subsystem on the KUSB-3116 module.

Table 5: A/D Subsystem Specifications

Feature	Specifications
Number of analog input channels Single-ended: Pseudo-differential: Differential:	16 16 8
Number of gains	4 (1, 2, 4, 8)
Resolution	16 bits
Data encoding	Offset binary
System accuracy, to % of FSR Gain = 1: Gain = 2: Gain = 4: Gain = 8:	±0.01% ±0.02% ±0.02% ±0.03%
Range	±10 V, ±5 V, ±2.5 V, ±1.25 V
Nonlinearity	<½ LSB
Differential nonlinearity	½ LSB
Inherent quantizing error	½ LSB
Drift Zero: Gain: Differential linearity:	±10 μV/° C ±30 ppm of FSR/° C ±2 ppm of FSR/° C
Input impedance Off channel: On channel:	100 MΩ, 10 pF 100 MΩ, 100 pF
Input bias current	±20 nA

Table 5: A/D Subsystem Specifications (cont.)

Feature	Specifications
Common mode voltage	±11 V, maximum
Common mode rejection ratio	80 dB, gain = 1 @ 1 kΩ
Maximum input voltage (without damage) Power on: Power off:	±35 V ±20 V
A/D conversion time	2.0 μs
Channel acquisition time (±½ LSB)	1 μs, typical
Sample-and-hold Aperture uncertainty: Aperture delay:	0.2 ns, typical 50 ns, typical
Throughput Single channel: Multiple channel:	500 kSamples/s 500 kSamples/s ±0.05% per channel
ESD protection Arc: Contact:	8 kV 4 kV
Reference	+5 V ±0.010 V
Monotonicity	1 LSB

Table 6 lists the specifications for the $\ensuremath{\mathsf{D}}/\ensuremath{\mathsf{A}}$ subsystem on the KUSB-3116 module.

Table 6: D/A Subsystem Specifications

Feature	Specifications
Number of analog output channels	4
Resolution	16 bits
Data encoding	Offset binary
Nonlinearity	1.0 LSB
Differential nonlinearity	1.0 LSB
Inherent quantizing error	1.0 LSB
Output range	±10 V
Error Zero: Gain:	Adjustable to 0 Adjustable to 0
Drift Zero (bipolar): Gain:	±10 ppm of FSR/° C ±30 ppm of FSR/° C
Throughput Waveform generation mode: Continuously paced analog output mode	500 kSamples/s per channel 500 kSamples/s per channel
FIFO	128 kSamples, total
Current output	±5 mA maximum load
Output impedance	0.1 Ω maximum
Capacitive driver capability	0.004 μF
Protection	Short circuit to analog ground
Power-on voltage	0 V ±10 mV maximum

Table 6: D/A Subsystem Specifications (cont.)

Feature	Specifications
Settling time to 0.01% of FSR	4.0 μs, 100 mV steps 5.0 μs, 10 V steps
Slew rate	10 V/µs
Glitch energy	12 nV/s, typical
ESD protection Arc: Contact:	8 kV 4 kV
Monotonicity	1 LSB

Table 7 lists the specifications for the DIN/DOUT subsystems on the KUSB-3116 module.

Table 7: DIN/DOUT Subsystem Specifications

Feature	Specifications
Number of digital I/O lines	32 (16 digital input, 16 digital output)
Number of ports	2 (16 bits each)
Number of dynamic digital output lines	1
Input termination	Inputs tied to +3.3 V through 15 k Ω pull-up resistors
Logic family	LVTTL (+5 V tolerance)
Logic sense	Positive true
Inputs Input type: Input logic load: High input voltage: Low input voltage: Low input current:	Level-sensitive 1 LVTTL 2.0 V minimum 0.8 V maximum -0.4 mA maximum
Outputs Fan out: High output: Low output: High output current: Low output current:	12 mA 2.0 V minimum 0.8 V maximum –12 mA maximum 12 mA maximum
Interrupt on change	Yes
Clocked with sample clock	Yes
Software I/O selectable	No

Table 8 lists the specifications for the $\mbox{C/T}$ subsystems on the KUSB-3116 module.

Table 8: C/T Subsystem Specifications

Feature	Specifications
Number of counter/timers	5
Resolution	32 bits per channel
Minimum pulse width (minimum amount of time it takes a C/T to recognize an input pulse)	55.5 ns
Logic family	LVTTL (+5 V tolerance)
Inputs Input logic load: High input voltage: Low input voltage: Low input current:	1 LVTTL 2.0 V minimum 0.8 V maximum –0.4 mA maximum
Outputs Fan out: High output: Low output: High output current: Low output current:	12 mA 2.0 V minimum 0.8 V maximum –12 mA maximum 12 mA maximum

Table 9 lists the specifications for the external A/D and D/A triggers on the KUSB-3116 module.

Table 9: External A/D and D/A Trigger Specifications

Feature	Specifications
Trigger sources Internal: External:	Software-initiated Software-selectable
Input type	Edge-sensitive
Logic family	LVTTL (+5 V tolerance)
Inputs Input logic load: Input termination: High input voltage: Low input voltage: High input current: Low input current: Minimum pulse width High:	1 LVTTL 2.2 kΩ pull-up to +3.3 V 2.0 V minimum 0.8 V maximum 25 μA maximum -0.25 mA maximum
Low:	25 ns
Triggering modes Single scan: Continuous scan: Triggered scan:	Yes Yes Yes

Table 10 lists the specifications for the internal A/D and D/A clocks on the KUSB-3116 module.

Table 10: Internal A/D and D/A Clock Specifications

Feature	Specifications
Reference frequency	18 MHz
Divisor range	3 to 4,294,967,295
Usable range	0.00210 Hz to 500 kHz

Table 11 lists the specifications for the external A/D and D/A clocks on the KUSB-3116 module.

Table 11: External A/D and D/A Clock Specifications

Feature	Specifications
Input type	Edge-sensitive, rising or falling edge programmable
Logic family	LVTTL (+5 V tolerance)
Inputs Input logic load: Input termination: High input voltage: Low input voltage:	1 LVTTL 2.2 k Ω pull-up to +3.3 V 2.0 V 0.8 V
Low input current:	1.2 mA
Oscillator frequency Minimum pulse width High: Low:	DC to 9 MHz 25 ns 25 ns

Table 12 lists the power, physical, and environmental specifications for the KUSB-3116 module.

Table 12: Power, Physical, and Environmental Specifications

Feature	Specifications
Power, +5 V	±5% @ 2 A maximum
Physical Dimensions	184.4 mm x 100 mm (7.30 X 3.94 inches)
Environmental Operating temperature range (OEM): Operating temperature range (BNC): Storage temperature range: Relative humidity:	0° C to 55° C 0° C to 45° C -25° C to 85° C To 95%, noncondensing

Table 13 lists the mating cable connectors for the connectors on the KUSB-3116 module.

Table 13: Mating Cable Connectors

Connector	Part Number on Module (or Equivalent)	Mating Cable Connector
Analog input	AMP/Tyco 747375-8	AMP/Tyco 747917-2
Digital I/O	AMP/Tyco 747301-8	AMP/Tyco 747916-2
C\T, DAC, Clk, Trig	AMP/Tyco 747301-8	AMP/Tyco 747916-2

Connector Pin Assignments

Analog Input Connector	114
Digital I/O Connector	116
Analog Output, Counter/Timer, Clock, and Trigger	
Connector	118

Analog Input Connector

Table 14 lists the pin assignments for the analog input connector on the KUSB-3116 module.

Table 14: Analog Input Connector Pin Assignments

Pin Assignment	Signal Description	Pin Assignment	Signal Description
1	Analog Input 0	2	Analog Input 1
3	Analog Input 2	4	Analog Input 3
5	Analog Input 4	6	Analog Input 5
7	Analog Input 6	8	Analog Input 7
9	Analog Input 8	10	Analog Input 9
11	Analog Input 10	12	Analog Input 11
13	Analog Input 12	14	Analog Input 13
15	Analog Input 14	16	Analog Input 15
17	Amplifier Low	18	+5 V Analog
19	Chassis Ground	20	Analog Input 0 Return/ Analog In 8 ^a
21	Analog Input 1 Return/ Analog In 9 ^a	22	Analog Input 2 Return/ Analog In 10 ^a
23	Analog Input 3 Return/ Analog In 11 ^a	24	Analog Input 4 Return/ Analog In 12 ^a
25	Analog Input 5 Return/ Analog In 13 ^a	26	Analog Input 6 Return/ Analog In 14 ^a
27	Analog Input 7 Return/ Analog In 15 ^a	28	Analog Input 8 Return ^a
29	Analog Input 9 Return ^a	30	Analog Input 10 Return ^a

Table 14: Analog Input Connector Pin Assignments (cont.)

Pin Assignment	Signal Description	Pin Assignment	Signal Description
31	Analog Input 11 Return ^a	32	Analog Input 12 Return ^a
33	Analog Input 13 Return ^a	34	Analog Input 14 Return ^a
35	Analog Input 15 Returna	36	Analog Ground
37	Digital Ground		

a. The first signal description (Return) applies to the differential configuration for all modules. The second signal description applies to the single-ended configuration for the module.

B

Digital I/O Connector

Table 15 lists the pin assignments for the digital I/O connector on the KUSB-3116 module.

Table 15: Digital I/O Connector Pin Assignments

Pin Assignment	Signal Description	Pin Assignment	Signal Description
1	Digital Input 0	2	Digital Input 1
3	Digital Input 2	4	Digital Input 3
5	Digital Input 4	6	Digital Input 5
7	Digital Input 6	8	Digital Input 7
9	Digital Input 8	10	Digital Input 9
11	Digital Input 10	12	Digital Input 11
13	Digital Input 12	14	Digital Input 13
15	Digital Input 14	16	Digital Input 15
17	Digital Ground	18	Digital Ground
19	Chassis Ground	20	Digital Output 0
21	Digital Output 1	22	Digital Output 2
23	Digital Output 3	24	Digital Output 4
25	Digital Output 5	26	Digital Output 6
27	Digital Output 7	28	Digital Output 8
29	Digital Output 9	30	Digital Output 10
31	Digital Output 11	32	Digital Output 12

Table 15: Digital I/O Connector Pin Assignments (cont.)

Pin Assignment	Signal Description	Pin Assignment	Signal Description
33	Digital Output 13	34	Digital Output 14
35	Digital Output 15	36	Dynamic Digital Output
37	Digital Ground		

Analog Output, Counter/Timer, Clock, and Trigger Connector

Table 16 lists the pin assignments for the analog output, counter/timer, clock, and trigger connector on the KUSB-3116 module.

Table 16: Analog Output, Counter/Timer, Clock, and Trigger Connector
Pin Assignments

Pin Assignment	Signal Description	Pin Assignment	Signal Description
1	Analog Output 0	2	Analog Output 1
3	Analog Output 2	4	Analog Output 3
5	Digital Ground	6	External DAC Clock
7	External ADC Clock	8	Counter 0 Clock
9	Counter 0 Out	10	Counter 1 Clock
11	Counter 1 Out	12	Counter 2 Clock
13	Counter 2 Out	14	Counter 3 Clock
15	Counter 3 Out	16	Counter 4 Clock
17	Counter 4 Out	18	Digital Ground
19	Chassis Ground	20	Analog Output 0 Return
21	Analog Output 1 Return	22	Analog Output 2 Return
23	Analog Output 3 Return	24	Digital Ground
25	External DAC Trigger	26	External ADC Trigger
27	Digital Ground	28	Counter 0 Gate
29	Digital Ground	30	Counter 1 Gate
31	Digital Ground	32	Counter 2 Gate

Table 16: Analog Output, Counter/Timer, Clock, and Trigger Connector
Pin Assignments (cont.)

Pin Assignment	Signal Description	Pin Assignment	Signal Description
33	Digital Ground	34	Counter 3 Gate
35	Digital Ground	36	Counter 4 Gate
37	Digital Ground		

Index

A	data format and transfer 33 error conditions 34
A/D Over Sample error 25 A/D subsystem specifications 104 aborting an operation 95 aliasing 16 analog input channel-gain list for analog input channels 9 channel-gain list for counter/timers 11	gain 28 ranges 28 resolution 26 single-value operations 30 subsystem specifications 106 analog threshold trigger 23, 29 applet, Open Layers Control Panel 8, 36, 60, 100
channel-gain list for digital input port 10 channels 7 continuous operations 17 conversion modes 17 data format and transfer 23 differential configuration 8 error conditions 25 gain 14 pseudo-differential configuration 8 ranges 14 resolution 7 sample clock sources 16 single-ended configuration 7 single-ended operations 17	base clock frequency 57 binary data encoding 56 buffers 53, 88, 89 cleaning up 96 dealing with for A/D operations 90 dealing with for D/A operations 93 inprocess flush 54 multiple wrap mode 54, 88, 89 setting up for A/D operations 88 setting up for D/A operations 89 single wrap mode 53, 88, 89 transferring from inprocess 92
triggers 22 analog output	waveform generation mode 54
channel list 27	C
channels 26 clock sources 29	C/T, see counter/timer 109 calibration 60
continuous operations 30 conversion modes 30	CGL, see channel-gain list 55

channel type	setting parameters for analog input
differential 56	operations 86
single-ended 56	simultaneous 57
channel-gain list 85	specifications 111
depth 55	continuous analog input
for analog input channels 9	externally retriggered scan mode 21
for counter/timers 11	how to perform 67
for digital input port 10	internally retriggered scan mode 20
inhibiting 55, 85	post-trigger 53
random 55	pre-trigger 53
sequential 55	scan operations 18
zero start 55	continuous analog output 53
channel-inhibit list 9	continuously paced 31
channels	how to perform 69
analog input 7	waveform generation mode 32
analog output 26	continuous counter/timer 53
counter/timer 38	continuous digital I/O 36, 53
digital I/O 35	how to perform digital input 71
number of 56	how to perform digital output 72
setting up parameters for 85	Control Panel applet 8, 36, 60, 100
cleaning up an operation 96	conversion modes
clock divider 79, 81	continuous analog output 30
clock sources	continuous scan mode 18
analog input 16	digital I/O 36
analog output 29	externally retriggered scan 21
counter/timer 39	internally retriggered scan 20
clocks	scan 17
base frequency 57	single-value analog input 17
clock divider 79, 81	single-value analog output 30
external 57, 86	conversion rate 18, 20, 21
frequency 86	counter/timer
internal 57, 73, 75, 77, 79, 81, 86	channels 38, 56
maximum external clock divider 57	clock sources 39, 57
maximum throughput 58	edge-to-edge measurement mode 58
minimum external clock divider 58	event counting 58
minimum throughput 58	gate types 40
number of extra 57	high-edge gate type 59

high-level gate type 59	differential channels 8, 56
high-to-low output pulse 58	digital I/O 35
in analog input channel-gain list 11	lines 35
internal gate type 59	operation modes 36
low-edge gate type 59	subsystem specifications 108
low-level gate type 59	synchronous 85
low-to-high output pulse 58	digital input port 36
one-shot mode 58	in analog input channel-gain list 10
rate generation mode 58	digital output line, dynamic 13, 37
repetitive one-shot mode 58	digital output port 36
subsystem specifications 109	in output channel list 27
up/down counting 58	digital trigger 23, 29
counting events 43	DT-LV Link 4
· ·	DTx-EZ 4
D	duty cycle 41
D	dynamic digital output 13, 37
D/A, see analog output 106	
DAC Over Sample error 34	_
data encoding 23, 33, 56	E
data flow modes	edge-to-edge measurement mode 45,
continuous analog input operations	58
67	encoding data 23, 33
continuous analog output operations	environmental specifications 112
69	errors
continuous C/T 53	analog input 25, 90
continuous digital input operations	analog output 34, 93
53	over sample 25, 34
continuous post-trigger operations	overflow 25
53	underflow 34
continuous pre-trigger operations 53	event counting 43, 58
single-value operations 53, 65	how to perform 73, 75, 79
data format and transfer	external clock 39, 57, 86
analog input 23	external clock divider
analog output 33	maximum 57
data processing 60	minimum 58
DataAcq SDK 4	external digital trigger 23, 29, 57
device driver 4	externally retriggered scan mode 21

extra retrigger 54	Н
	hardware features 2
F	high-edge gate type 59
features 2	high-level gate type 59
formatting data	
analog input 23	1
analog output 33	
frequency	inhibiting channel-gain list 85
base clock 57	inprocess buffers 54, 92
external A/D clock 16	input channels 7
external C/T clock 39	ranges 14
external DAC clock 30	resolution 7
internal A/D clock 16, 58, 86	sample clock sources 16
internal A/D sample clock 58	input configuration
internal C/T clock 39, 58	differential analog 8
internal DAC clock 29	pseudo-differential analog 8
internal retrigger clock 55	single-ended analog 7
output pulse 46 retrigger 87	Input FIFO Overflow error 25
frequency measurement 44	internal
how to perform 77	clock 39, 57, 73, 75, 77, 79, 81, 86
now to periodic ??	gate type 59
	retrigger 54
G	internally retriggered scan mode 20
gain	interrupt-on-change operations 36
analog input 14	interrupts 60
analog output 28	
number of 55	L
gap-free data 54	lines, digital I/O 35
gate type 40, 73, 81	LongtoFreq macro 78
high-edge 59	low-edge gate type 59
high-level 59 internal 59	low-level gate type 59
low-edge 59 low-level 59	N./Ι
generating pulses 46, 47, 48	IVI
6	macro 78

measuring frequency 44	OLDA_WM_TRIGGER_ERROR 93
measuring pulses 45	OLDA_WM_TRIGGERERROR 90
messages 53	OLDA_WM_UNDERRUN 93
dealing with for A/D operations 90	olDaAbort 95
dealing with for D/A operations 93	olDaConfig
error 90, 93	in continuous A/D operations 68
multiple buffer wrap mode 54, 88, 89	in continuous D/A operations 70, 71,
multiple channels	72
analog input 9	in event counting operations 73, 75,
analog output 27	79
•	in frequency measurement
A.I	operations 78
N	in pulse output operations 82
number of	in single-value operations 65
differential channels 56	olDaFlushBuffers 96
DMA channels 54	olDaFlushFromBufferInprocess 92
extra clocks 57	olDaGetBuffer 91, 94, 96
extra triggers 57	olDaGetDASS
filters 56	in continuous A/D operations 67
gains 55	in continuous D/A operations $69,71$,
I/O channels 56	72
resolutions 56	in event counting operations 73, 75,
scans per trigger 54	79
single-ended channels 56	in frequency measurement
voltage ranges 56	operations 77
Nyquist Theorem 16	in pulse output operations 81
0	in single-value operations 65
	olDaGetQueueSize 92, 96
	olDaGetSingleValue 66
OLDA_WM_BUFFER_ DONE 92	olDaGetSSCaps 52
OLDA_WM_BUFFER_DONE 91, 94	olDaGetSSCapsEx 52
OLDA_WM_BUFFER_REUSED 90, 93	olDaGetSSList 83
OLDA_WM_IO_COMPLETE 94	olDaInitialize
OLDA_WM_OVERRUN 90	in continuous A/D operations 67
OLDA_WM_QUEUE_DONE 90, 93	in continuous D/A operations $69,71$,
OLDA_WM_QUEUE_STOPPED 90,	72
93	in event counting operations 73, 75,

79	olDaSetDigitalIOLIstEntry 85
in frequency measurement	olDaSetExternalClockDivider 79, 81
operations 77	olDaSetGainListEntry 85
in pulse output operations 81	olDaSetGateType 73, 81
in single-value operations 65	olDaSetMeasureStartEdge 79
olDaMeasureFrequency 78	olDaSetMeasureStopEdge 79
olDaPutBuffer 88, 89, 91, 94	olDaSetMultiscanCount 87
olDaPutDassToSSList 83	olDaSetPulseType 82
olDaPutSingleValue 66, 86	olDaSetPulseWidth 82
olDaReadEvents 74, 76	olDaSetRange, in single-value
olDaReleaseDASS	operations 65
in continuous A/D operations 96	olDaSetRetrigger 87
in continuous D/A operations 96	olDaSetRetriggerFrequency 87
in event counting operations 74, 76,	olDaSetRetriggerMode 87
80	olDaSetSynchronousDigitalIOUsage
in frequency measurement	85
operations 78	olDaSetTrigger 86
in pulse output operations 82	olDaSetTriggeredScanUsage 87
in single-value operations 66	olDaSetWndHandle 88, 89
olDaReleaseSSList 96	olDaSetWrapMode 88, 89
olDaReset 95	olDaSimultaneousPreStart 83
olDaSetChannelListEntry 85	olDaSimultaneousStart 83
olDaSetChannelListEntryInhibit 85	olDaStart
olDaSetChannelListSize 85	in continuous A/D operations 68
olDaSetClockFrequency 86	in continuous D/A operations $70, 71,$
olDaSetClockSource 73, 75, 77, 79, 81,	72
86	in event counting operations 74, 76,
olDaSetCTMode	80
in event counting operations 73, 75,	in pulse output operations 82
79	olDaStop 95
in frequency measurement	olDaTerminate
operations 77	in continuous A/D operations 96
in pulse output operations 82	in continuous D/A operations 96
olDaSetDataFlow	in event counting operations 74, 76,
in continuous A/D operations 67	80
in continuous D/A operations 69	in frequency measurement
in single-value operations 65	operations 78

in pulse output operations 82	RPT 58
in single-value operations 66	OLSSC_SUP_CTMODE_RATE 58
olDmAllocBuffer 88, 89, 92	OLSSC_SUP_CTMODE_UP_DOWN
olDmCallocBuffer 92	58
olDmCopyFromBuffer 91	OLSSC_SUP_DIFFERENTIAL 56
olDmCopyToBuffer 94	OLSSC_SUP_EXTCLOCK 57
olDmFreeBuffer 96	OLSSC_SUP_EXTERNTRIG 57
olDmGetValidSamples 91	OLSSC_SUP_GAPFREE_NODMA 54
olDmMallocBuffer 92	OLSSC_SUP_GATE_HIGH_EDGE 59
olDmSetValidSamples 89	OLSSC_SUP_GATE_HIGH_LEVEL 59
OLSSC_CGLDEPTH 55	OLSSC_SUP_GATE_LOW_EDGE 59
OLSSC_MAX_DIGITALIOLIST_VAL	OLSSC_SUP_GATE_LOW_LEVEL 59
UE 55	OLSSC_SUP_GATE_NONE 59
OLSSC_MAXDICHANS 56	OLSSC_SUP_INPROCESSFLUSH 54
OLSSC_MAXMULTISCAN 54	OLSSC_SUP_INTCLOCK 57
OLSSC_MAXSECHANS 56	OLSSC_SUP_INTERRUPT 60
OLSSC_NUMCHANNELS 56	OLSSC_SUP_PLS_HIGH2LOW 58
OLSSC_NUMDMACHANS 54	OLSSC_SUP_PLS_LOW2HIGH 58
OLSSC_NUMEXTRACLOCKS 57	OLSSC_SUP_POSTMESSAGE 53
OLSSC_NUMEXTRATRIGGERS 57	OLSSC_SUP_PROCESSOR 60
OLSSC_NUMFILTERS 56	OLSSC_SUP_PROGRAMGAIN 55
OLSSC_NUMGAINS 55	OLSSC_SUP_RANDOM_CGL 55
OLSSC_NUMRANGES 56	OLSSC_SUP_RETRIGGER_EXTRA 54
OLSSC_NUMRESOLUTIONS 56	OLSSC_SUP_RETRIGGER_INTERNA
OLSSC_SUP_BINARY 56	L 54
OLSSC_SUP_BUFFERING 53, 54	OLSSC_SUP_RETRIGGER_SCAN_
OLSSC_SUP_CHANNELLIST_	PER_TRIGGER 54
INHIBIT 55	OLSSC_SUP_SEQUENTIAL_CGL 55
OLSSC_SUP_CONTINUOUS 53	OLSSC_SUP_SIMULTANEOUS_CLO
OLSSC_SUP_CONTINUOUS_PRETRI	CKING 57
G 53	OLSSC_SUP_SIMULTANEOUS_STAR
OLSSC_SUP_CTMODE_COUNT 58	T 53
OLSSC_SUP_CTMODE_MEASURE	OLSSC_SUP_SINGLEENDED 56
58	OLSSC_SUP_SINGLEVALUE 53
OLSSC_SUP_CTMODE_ONESHOT	OLSSC_SUP_SOFTTRIG 57
58	OLSSC_SUP_SWCAL 60
OLSSC_SUP_CTMODE_ONESHOT_	OLSSC_SUP_SYNCHRONOUS_

DIGITALIO 55	P
OLSSC_SUP_THRESHTRIGPOS 57	-
OLSSC_SUP_TRIGSCAN 54	period 46
OLSSC_SUP_WRPMULTIPLE 54	physical specifications 112
OLSSC_SUP_WRPSINGLE 53	ports, digital I/O 35
OLSSC_SUP_ZEROSEQUENTIAL_C	positive threshold trigger 57
GL 55	post-trigger acquisition mode 53
OLSSCE_BASECLOCK 57	power specifications 112
OLSSCE_MAX_THROUGHPUT 58	pre-trigger acquisition mode 53
OLSSCE_MAXCLOCKDIVIDER 57	programmable gain 55
OLSSCE_MAXRETRIGGER 55	pseudo-differential inputs 8
OLSSCE_MIN_THROUGHPUT 58	pulse output
OLSSCE_MINCLOCKDIVIDER 58	how to perform 81
OLSSCE_MINRETRIGGER 55	one-shot 47
one-shot pulse output 47, 58	rate generation 46
Open Layers Control Panel applet 8,	repetitive one-shot 48
36, 60, 100	types 41
operation modes	pulse width 41, 46
continuous digital I/O 36	
continuous scan 18	Q
externally retriggered scan 21	Quick Data Acq application 4
internally retriggered scan 20	Quick Data Acq application 4
single-value analog input 17	
single-value analog output 30	R
single-value digital I/O 36	random channel-gain list 55
triggered scan 19	ranges
waveform generation 32	analog input 14
output	analog output 28
channel list 27	number of 56
clock sources 29	rate generation 46, 58
pulses 58	repetitive one-shot pulse output 48, 58
ranges 28	resetting an operation 95
Output FIFO Underflow error 34	resolution
outputting pulses 46, 47, 48	analog input 7
over sample error 25, 34	analog output 26
overflow error 25	number of 56
	retrigger clock frequency 55, 87
	rearinger crock frequency 55, 67

retriggered scan mode 20, 21, 87	triggers 110
	stopping an operation 17, 31, 95
C	synchronous digital I/O 55, 85
S	maximum value 55
sample clock sources 16	
sample rate 18, 20	T
scan mode	T
externally retriggered 21	technical support 101
internally retriggered 20	threshold trigger 57
scan operations, analog input 17	throughput
scan per trigger 54	maximum 58
sequential channel-gain list 55	minimum 58
service and support procedure 101	transferring data
simultaneous clocking 57	analog input 23
simultaneous operations 83	analog output 33
simultaneous start list 53	triggered scan 19, 54, 87
single buffer wrap mode 53, 88, 89	extra retrigger 54
single channel	internal retrigger 54
analog input 9	number of scans per trigger 54
analog output 27	retrigger frequency 55
single-ended channels 7, 56	scan per trigger 54
number of 56	setting up 87
single-value operations 53, 65	triggers 86, 87
analog input 17	analog input 22
analog output 30	analog threshold 23, 29, 57
digital I/O 36	external 23, 29, 57
how to perform 65	number of extra 57
software trigger 23, 28, 57	setting parameters for 86
specifications 103	software 23, 28, 57
analog input 104	specifications 110
analog output 106	troubleshooting
clocks 111	procedure 98
counter/timer specifications 109	service and support procedure 101
digital I/O 108	troubleshooting table 99
environmental 112	TTL trigger 23, 29
physical 112	
power 112	

U

underflow error 34 units, counter/timer 38 up/down counting 43, 58

V

voltage ranges 14 number of 56

W

waveform generation mode 32 Windows messages 53 wrap mode 88, 89 analog input 24 analog output 33

Z

zero start sequential channel-gain list 55

Specifications are subject to change without notice.

All Keithley trademarks and trade names are the property of Keithley Instruments, Inc.

All other trademarks and trade names are the property of their respective companies.

A GREATER MEASURE OF CONFIDENCE

Keithley Instruments, Inc.

Corporate Headquarters • 28775 Aurora Road • Cleveland, Ohio 44139 • 440-248-0400 • Fax: 440-248-6168 • 1-888-KEITHLEY (534-8453) • www.keithley.com